sympy.integrals.transforms.inverse_hankel_transform() in python Last Updated : 10 Jul, 2020 Summarize Comments Improve Suggest changes Share Like Article Like Report With the help of inverse_hankel_transform() method, we can compute the inverse of hankel transformation and returns the unevaluated function by using this method. inverse hankel transformation Syntax : inverse_hankel_transform(F, k, r, nu, **hints) Return : Return the unevaluated function. Example #1 : In this example we can see that by using inverse_hankel_transform() method, we are able to compute the inverse hankel transformation and return the unevaluated function. Python3 # import inverse_hankel_transform from sympy import hankel_transform, inverse_hankel_transform, gamma from sympy import gamma, exp, sinh, cosh from sympy.abc import r, k, m, nu, a ht = hankel_transform(5/(r*m), r, k, nu) # Using inverse_hankel_transform() method gfg = inverse_hankel_transform(ht, k, r, nu) print(gfg) Output : 5/(m*r) Example #2 : Python3 # import inverse_hankel_transform from sympy import hankel_transform, inverse_hankel_transform, gamma from sympy import gamma, exp, sinh, cosh from sympy.abc import r, k, m, nu, a ht = hankel_transform(exp(-2*r), r, k, 0) # Using inverse_hankel_transform() method gfg = inverse_hankel_transform(ht, k, r, 0) print(gfg) Output : exp(-2*r) Comment More infoAdvertise with us Next Article sympy.integrals.transforms.inverse_hankel_transform() in python J jitender_1998 Follow Improve Article Tags : Python Python Programs SymPy Python SymPy-Integral Practice Tags : python Similar Reads sympy.integrals.transforms.hankel_transform() in python With the help of hankel_transform() method, we can compute the hankel transformation and returns the transformed function by using this method. hankel transformation Syntax : hankel_transform(f, r, k, nu, **hints) Return : Return the transformed function. Example #1 : In this example we can see that 1 min read sympy.integrals.transforms.mellin_transform() in python With the help of transforms.mellin_transform() method, we can compute the mellin transform F(s) of f(x). Syntax : transforms.mellin_transform(f, x, s) Return : Return the fundamental strip and auxiliary convergence conditions. Example #1 : In this example we can see that by using transforms.mellin_t 1 min read sympy.integrals.transforms.cosine_transform() in python With the help of cosine_transform() method, we can compute the cosine transformation and return the transformed function by using this method. cosine transformation Syntax : cosine_transform(f, x, k, **hints) Return : Return the transformed function. Example #1 : In this example we can see that by u 1 min read sympy.integrals.transforms.laplace_transform() in python With the help of laplace_transform() method, we can compute the laplace transformation F(s) of f(t). Syntax : laplace_transform(f, t, s) Return : Return the laplace transformation and convergence condition. Example #1 : In this example, we can see that by using laplace_transform() method, we are abl 1 min read sympy.transforms.inverse_mellin_transform() in python With the help of inverse_mellin_transform method, we can compute the inverse mellin transform and return the function. Syntax : inverse_mellin_transform(F, s, x, strip) Return : Return the function F(x). Example #1 : In this example we can see that by using inverse_mellin_transform() method, we are 1 min read Like