Sum of minimum element of all subarrays of a sorted array
Last Updated :
22 Jun, 2022
Given a sorted array A of n integers. The task is to find the sum of the minimum of all possible subarrays of A.
Examples:
Input: A = [ 1, 2, 4, 5]
Output: 23
Subsequences are [1], [2], [4], [5], [1, 2], [2, 4], [4, 5] [1, 2, 4], [2, 4, 5], [1, 2, 4, 5]
Minimums are 1, 2, 4, 5, 1, 2, 4, 1, 2, 1.
Sum is 23
Input: A = [1, 2, 3]
Output: 10
Approach: The Naive approach is to generate all possible subarrays, find their minimum and add them to the result.
Efficient Approach: It is given that the array is sorted, so observe that the minimum element occurs N times, the second minimum occurs N-1 times, and so on... Let's take an example:
arr[] = {1, 2, 3}
Subarrays are {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}
Minimum of each subarray: {1}, {2}, {3}, {1}, {2}, {1}.
where
1 occurs 3 times i.e. n times when n = 3.
2 occurs 2 times i.e. n-1 times when n = 3.
3 occurs 1 times i.e. n-2 times when n = 3.
So, traverse the array and add the current element i.e. (arr[i]* n-i) to the sum.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the sum
// of minimum of all subarrays
int findMinSum(int arr[], int n)
{
int sum = 0;
for (int i = 0; i < n; i++)
sum += arr[i] * (n - i);
return sum;
}
// Driver code
int main()
{
int arr[] = { 3, 5, 7, 8 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << findMinSum(arr, n);
return 0;
}
Java
// Java implementation of the above approach
class GfG
{
// Function to find the sum
// of minimum of all subarrays
static int findMinSum(int arr[], int n)
{
int sum = 0;
for (int i = 0; i < n; i++)
sum += arr[i] * (n - i);
return sum;
}
// Driver code
public static void main(String[] args)
{
int arr[] = { 3, 5, 7, 8 };
int n = arr.length;
System.out.println(findMinSum(arr, n));
}
}
// This code is contributed by Prerna Saini
Python3
# Python3 implementation of the
# above approach
# Function to find the sum
# of minimum of all subarrays
def findMinSum(arr, n):
sum = 0
for i in range(0, n):
sum += arr[i] * (n - i)
return sum
# Driver code
arr = [3, 5, 7, 8 ]
n = len(arr)
print(findMinSum(arr, n))
# This code has been contributed
# by 29AjayKumar
C#
// C# implementation of the above approach
using System;
class GfG
{
// Function to find the sum
// of minimum of all subarrays
static int findMinSum(int []arr, int n)
{
int sum = 0;
for (int i = 0; i < n; i++)
sum += arr[i] * (n - i);
return sum;
}
// Driver code
public static void Main(String []args)
{
int []arr = { 3, 5, 7, 8 };
int n = arr.Length;
Console.WriteLine(findMinSum(arr, n));
}
}
// This code is contributed by Arnab Kundu
PHP
<?php
// PHP implementation of the above approach
// Function to find the sum
// of minimum of all subarrays
function findMinSum($arr,$n)
{
$sum = 0;
for ($i = 0; $i < $n; $i++)
$sum += $arr[$i] * ($n - $i);
return $sum;
}
// Driver code
$arr = array( 3, 5, 7, 8 );
$n = count($arr);
echo findMinSum($arr, $n);
// This code is contributed by Arnab Kundu
?>
JavaScript
<script>
// Javascript implementation of the above approach
// Function to find the sum
// of minimum of all subarrays
function findMinSum(arr, n)
{
var sum = 0;
for (var i = 0; i < n; i++)
sum += arr[i] * (n - i);
return sum;
}
// Driver code
var arr = [ 3, 5, 7, 8 ];
var n = arr.length;
document.write( findMinSum(arr, n));
</script>
Time Complexity: O(n)
Auxiliary Space: O(1)
Note: To find the Sum of maximum element of all subarrays in a sorted array, just traverse the array in reverse order and apply the same formula for Sum.
Similar Reads
Sum of minimum element of all sub-sequences of a sorted array Given a sorted array A of n integers. The task is to find the sum of the minimum of all possible subsequences of A.Note: Considering there will be no overflow of numbers. Examples: Input: A = [1, 2, 4, 5] Output: 29 Subsequences are [1], [2], [4], [5], [1, 2], [1, 4], [1, 5], [2, 4], [2, 5], [4, 5]
4 min read
Sum of minimum elements of all subarrays Given an array arr[] of integers. The objective is to find the sum of minimum of all possible subarray of arr[].Examples: Input: arr[] = [3, 1, 2, 4] Output: 17 Explanation: Subarrays are [3], [1], [2], [4], [3, 1], [1, 2], [2, 4], [3, 1, 2], [1, 2, 4], [3, 1, 2, 4]. Minimums are 3, 1, 2, 4, 1, 1, 2
14 min read
Minimum sum of medians of all possible K length subsequences of a sorted array Given a sorted array arr[] consisting of N integers and a positive integer K(such that N%K is 0), the task is to find the minimum sum of the medians of all possible subsequences of size K such that each element belongs to only one subsequence. Examples: Input: arr[] = {1, 2, 3, 4, 5, 6}, K = 2Output
7 min read
Minimum common element in all subarrays of size K Given an array arr[] consisting of N distinct integers and a positive integer K, the task is to find the minimum element that occurs in all subarrays of size K. If no such element exists, then print "-1". Examples: Input: arr[] = {1, 2, 3, 4, 5}, K = 4Output: 2Explanation:The subarrays of size 4 are
7 min read
Find array elements equal to sum of any subarray of at least size 2 Given an array arr[], the task is to find the elements from the array which are equal to the sum of any sub-array of size greater than 1.Examples: Input: arr[] = {1, 2, 3, 4, 5, 6} Output: 3, 5, 6 Explanation: The elements 3, 5, 6 are equal to sum of subarrays {1, 2},{2, 3} and {1, 2, 3} respectivel
6 min read