Sum of all the Boundary Nodes of a Binary Tree
Last Updated :
12 Jan, 2023
Given a binary tree, the task is to print the sum of all the boundary nodes of the tree.

Examples:
Input:
1
/ \
2 3
/ \ / \
4 5 6 7
Output: 28
Input:
1
/ \
2 3
\ /
4 5
\
6
/ \
7 8
Output: 36
Approach: We have already discussed the Boundary Traversal of a Binary tree. Here we will find the sum of the boundary nodes of the given binary tree in four steps:
- Sum up all the nodes of the left boundary,
- Sum up all the leaf nodes of the left sub-tree,
- Sum up all the leaf nodes of the right sub-tree and
- Sum up all the nodes of the right boundary.
We will have to take care of one thing that nodes don't add up again, i.e. the left most node is also the leaf node of the tree.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// A binary tree node has data,
// pointer to left child
// and a pointer to right child
struct Node {
int data;
struct Node* left;
struct Node* right;
};
// Utility function to create a node
Node* newNode(int data)
{
Node* temp = new Node;
temp->left = NULL;
temp->right = NULL;
temp->data = data;
return temp;
}
// Function to sum up all the left boundary nodes
// except the leaf nodes
void LeftBoundary(Node* root, int& sum_of_boundary_nodes)
{
if (root) {
if (root->left) {
sum_of_boundary_nodes += root->data;
LeftBoundary(root->left, sum_of_boundary_nodes);
}
else if (root->right) {
sum_of_boundary_nodes += root->data;
LeftBoundary(root->right, sum_of_boundary_nodes);
}
}
}
// Function to sum up all the right boundary nodes
// except the leaf nodes
void RightBoundary(Node* root, int& sum_of_boundary_nodes)
{
if (root) {
if (root->right) {
RightBoundary(root->right, sum_of_boundary_nodes);
sum_of_boundary_nodes += root->data;
}
else if (root->left) {
RightBoundary(root->left, sum_of_boundary_nodes);
sum_of_boundary_nodes += root->data;
}
}
}
// Function to sum up all the leaf nodes
// of a binary tree
void Leaves(Node* root, int& sum_of_boundary_nodes)
{
if (root) {
Leaves(root->left, sum_of_boundary_nodes);
// Sum it up if it is a leaf node
if (!(root->left) && !(root->right))
sum_of_boundary_nodes += root->data;
Leaves(root->right, sum_of_boundary_nodes);
}
}
// Function to return the sum of all the
// boundary nodes of the given binary tree
int sumOfBoundaryNodes(struct Node* root)
{
if (root) {
// Root node is also a boundary node
int sum_of_boundary_nodes = root->data;
// Sum up all the left nodes
// in TOP DOWN manner
LeftBoundary(root->left, sum_of_boundary_nodes);
// Sum up all the
// leaf nodes
Leaves(root->left, sum_of_boundary_nodes);
Leaves(root->right, sum_of_boundary_nodes);
// Sum up all the right nodes
// in BOTTOM UP manner
RightBoundary(root->right, sum_of_boundary_nodes);
// Return the sum of
// all the boundary nodes
return sum_of_boundary_nodes;
}
return 0;
}
// Driver code
int main()
{
Node* root = newNode(10);
root->left = newNode(2);
root->right = newNode(5);
root->left->left = newNode(8);
root->left->right = newNode(14);
root->right->left = newNode(11);
root->right->right = newNode(3);
root->left->right->left = newNode(12);
root->right->left->right = newNode(1);
root->right->left->left = newNode(7);
cout << sumOfBoundaryNodes(root);
return 0;
}
Java
// Java implementation of the approach
class GFG
{
static int sum_of_boundary_nodes=0;
// A binary tree node has data,
// pointer to left child
static class Node
{
int data;
Node left;
Node right;
};
// Utility function to create a node
static Node newNode(int data)
{
Node temp = new Node();
temp.left = null;
temp.right = null;
temp.data = data;
return temp;
}
// Function to sum up all the left boundary nodes
// except the leaf nodes
static void LeftBoundary(Node root)
{
if (root != null)
{
if (root.left != null)
{
sum_of_boundary_nodes += root.data;
LeftBoundary(root.left);
}
else if (root.right != null)
{
sum_of_boundary_nodes += root.data;
LeftBoundary(root.right);
}
}
}
// Function to sum up all the right boundary nodes
// except the leaf nodes
static void RightBoundary(Node root)
{
if (root != null)
{
if (root.right != null)
{
RightBoundary(root.right);
sum_of_boundary_nodes += root.data;
}
else if (root.left != null)
{
RightBoundary(root.left);
sum_of_boundary_nodes += root.data;
}
}
}
// Function to sum up all the leaf nodes
// of a binary tree
static void Leaves(Node root)
{
if (root != null)
{
Leaves(root.left);
// Sum it up if it is a leaf node
if ((root.left == null) && (root.right == null))
sum_of_boundary_nodes += root.data;
Leaves(root.right);
}
}
// Function to return the sum of all the
// boundary nodes of the given binary tree
static int sumOfBoundaryNodes( Node root)
{
if (root != null)
{
// Root node is also a boundary node
sum_of_boundary_nodes = root.data;
// Sum up all the left nodes
// in TOP DOWN manner
LeftBoundary(root.left);
// Sum up all the
// leaf nodes
Leaves(root.left);
Leaves(root.right);
// Sum up all the right nodes
// in BOTTOM UP manner
RightBoundary(root.right);
// Return the sum of
// all the boundary nodes
return sum_of_boundary_nodes;
}
return 0;
}
// Driver code
public static void main(String args[])
{
Node root = newNode(10);
root.left = newNode(2);
root.right = newNode(5);
root.left.left = newNode(8);
root.left.right = newNode(14);
root.right.left = newNode(11);
root.right.right = newNode(3);
root.left.right.left = newNode(12);
root.right.left.right = newNode(1);
root.right.left.left = newNode(7);
System.out.println(sumOfBoundaryNodes(root));
}
}
// This code is contributed by andrew1234
Python3
# Python3 implementation of the approach
# A binary tree node has data,
# pointer to left child
# and a pointer to right child
class Node:
def __init__(self):
self.left = None
self.right = None
sum_of_boundary_nodes = 0
# Utility function to create a node
def newNode(data):
temp = Node()
temp.data = data;
return temp;
# Function to sum up all the
# left boundary nodes except
# the leaf nodes
def LeftBoundary(root):
global sum_of_boundary_nodes
if (root != None):
if (root.left != None):
sum_of_boundary_nodes += root.data;
LeftBoundary(root.left);
elif (root.right != None):
sum_of_boundary_nodes += root.data;
LeftBoundary(root.right);
# Function to sum up all the right
# boundary nodes except the leaf nodes
def RightBoundary(root):
global sum_of_boundary_nodes
if (root != None):
if (root.right != None):
RightBoundary(root.right);
sum_of_boundary_nodes += root.data;
elif (root.left != None):
RightBoundary(root.left);
sum_of_boundary_nodes += root.data;
# Function to sum up all the leaf nodes
# of a binary tree
def Leaves(root):
global sum_of_boundary_nodes
if (root != None):
Leaves(root.left);
# Sum it up if it is a leaf node
if ((root.left == None) and
(root.right == None)):
sum_of_boundary_nodes += root.data;
Leaves(root.right);
# Function to return the sum of all the
# boundary nodes of the given binary tree
def sumOfBoundaryNodes(root):
global sum_of_boundary_nodes
if (root != None):
# Root node is also a boundary node
sum_of_boundary_nodes = root.data;
# Sum up all the left nodes
# in TOP DOWN manner
LeftBoundary(root.left);
# Sum up all the
# leaf nodes
Leaves(root.left);
Leaves(root.right);
# Sum up all the right nodes
# in BOTTOM UP manner
RightBoundary(root.right);
# Return the sum of
# all the boundary nodes
return sum_of_boundary_nodes;
return 0;
# Driver code
if __name__=="__main__":
root = newNode(10);
root.left = newNode(2);
root.right = newNode(5);
root.left.left = newNode(8);
root.left.right = newNode(14);
root.right.left = newNode(11);
root.right.right = newNode(3);
root.left.right.left = newNode(12);
root.right.left.right = newNode(1);
root.right.left.left = newNode(7);
print(sumOfBoundaryNodes(root));
# This code is contributed by rutvik_56
C#
// C# implementation of the approach
using System;
class GFG
{
static int sum_of_boundary_nodes = 0;
// A binary tree node has data,
// pointer to left child
public class Node
{
public int data;
public Node left;
public Node right;
};
// Utility function to create a node
static Node newNode(int data)
{
Node temp = new Node();
temp.left = null;
temp.right = null;
temp.data = data;
return temp;
}
// Function to sum up all the left boundary
// nodes except the leaf nodes
static void LeftBoundary(Node root)
{
if (root != null)
{
if (root.left != null)
{
sum_of_boundary_nodes += root.data;
LeftBoundary(root.left);
}
else if (root.right != null)
{
sum_of_boundary_nodes += root.data;
LeftBoundary(root.right);
}
}
}
// Function to sum up all the right boundary
// nodes except the leaf nodes
static void RightBoundary(Node root)
{
if (root != null)
{
if (root.right != null)
{
RightBoundary(root.right);
sum_of_boundary_nodes += root.data;
}
else if (root.left != null)
{
RightBoundary(root.left);
sum_of_boundary_nodes += root.data;
}
}
}
// Function to sum up all the leaf nodes
// of a binary tree
static void Leaves(Node root)
{
if (root != null)
{
Leaves(root.left);
// Sum it up if it is a leaf node
if ((root.left == null) &&
(root.right == null))
sum_of_boundary_nodes += root.data;
Leaves(root.right);
}
}
// Function to return the sum of all the
// boundary nodes of the given binary tree
static int sumOfBoundaryNodes(Node root)
{
if (root != null)
{
// Root node is also a boundary node
sum_of_boundary_nodes = root.data;
// Sum up all the left nodes
// in TOP DOWN manner
LeftBoundary(root.left);
// Sum up all the
// leaf nodes
Leaves(root.left);
Leaves(root.right);
// Sum up all the right nodes
// in BOTTOM UP manner
RightBoundary(root.right);
// Return the sum of
// all the boundary nodes
return sum_of_boundary_nodes;
}
return 0;
}
// Driver code
public static void Main(String []args)
{
Node root = newNode(10);
root.left = newNode(2);
root.right = newNode(5);
root.left.left = newNode(8);
root.left.right = newNode(14);
root.right.left = newNode(11);
root.right.right = newNode(3);
root.left.right.left = newNode(12);
root.right.left.right = newNode(1);
root.right.left.left = newNode(7);
Console.WriteLine(sumOfBoundaryNodes(root));
}
}
// This code is contributed by Princi Singh
JavaScript
<script>
// JavaScript implementation of the approach
let sum_of_boundary_nodes=0;
// Binary Tree Node
class Node
{
constructor(data) {
this.left = null;
this.right = null;
this.data = data;
}
}
// Utility function to create a node
function newNode(data)
{
let temp = new Node(data);
return temp;
}
// Function to sum up all the left boundary nodes
// except the leaf nodes
function LeftBoundary(root)
{
if (root != null)
{
if (root.left != null)
{
sum_of_boundary_nodes += root.data;
LeftBoundary(root.left);
}
else if (root.right != null)
{
sum_of_boundary_nodes += root.data;
LeftBoundary(root.right);
}
}
}
// Function to sum up all the right boundary nodes
// except the leaf nodes
function RightBoundary(root)
{
if (root != null)
{
if (root.right != null)
{
RightBoundary(root.right);
sum_of_boundary_nodes += root.data;
}
else if (root.left != null)
{
RightBoundary(root.left);
sum_of_boundary_nodes += root.data;
}
}
}
// Function to sum up all the leaf nodes
// of a binary tree
function Leaves(root)
{
if (root != null)
{
Leaves(root.left);
// Sum it up if it is a leaf node
if ((root.left == null) && (root.right == null))
sum_of_boundary_nodes += root.data;
Leaves(root.right);
}
}
// Function to return the sum of all the
// boundary nodes of the given binary tree
function sumOfBoundaryNodes(root)
{
if (root != null)
{
// Root node is also a boundary node
sum_of_boundary_nodes = root.data;
// Sum up all the left nodes
// in TOP DOWN manner
LeftBoundary(root.left);
// Sum up all the
// leaf nodes
Leaves(root.left);
Leaves(root.right);
// Sum up all the right nodes
// in BOTTOM UP manner
RightBoundary(root.right);
// Return the sum of
// all the boundary nodes
return sum_of_boundary_nodes;
}
return 0;
}
let root = newNode(10);
root.left = newNode(2);
root.right = newNode(5);
root.left.left = newNode(8);
root.left.right = newNode(14);
root.right.left = newNode(11);
root.right.right = newNode(3);
root.left.right.left = newNode(12);
root.right.left.right = newNode(1);
root.right.left.left = newNode(7);
document.write(sumOfBoundaryNodes(root));
</script>
Time Complexity: O(N) where N is the number of nodes in the binary tree.
Auxiliary Space: O(h) where h is the height of given Binary Tree due to Recursion
Similar Reads
Sum of all nodes in a binary tree Give an algorithm for finding the sum of all elements in a binary tree. In the above binary tree sum = 106. Recommended PracticeSum of Binary TreeTry It!The idea is to recursively, call left subtree sum, right subtree sum and add their values to current node's data. Implementation: C++ /* Program to
15+ min read
Sum of all leaf nodes of binary tree Given a binary tree, find the sum of all the leaf nodes.Examples: Input : 1 / \ 2 3 / \ / \ 4 5 6 7 \ 8 Output : Sum = 4 + 5 + 8 + 7 = 24 Recommended PracticeSum of Leaf NodesTry It! The idea is to traverse the tree in any fashion and check if the node is the leaf node or not. If the node is the lea
5 min read
Find sum of all nodes of the given perfect binary tree Given a positive integer L which represents the number of levels in a perfect binary tree. Given that the leaf nodes in this perfect binary tree are numbered starting from 1 to n, where n is the number of leaf nodes. And the parent node is the sum of the two child nodes. Our task is to write a progr
11 min read
Sum of nodes at maximum depth of a Binary Tree Given a root node to a tree, find the sum of all the leaf nodes which are at maximum depth from root node. Example: 1 / \ 2 3 / \ / \ 4 5 6 7 Input : root(of above tree) Output : 22 Explanation: Nodes at maximum depth are: 4, 5, 6, 7. So, sum of these nodes = 22 While traversing the nodes compare th
15+ min read
Sum of nodes in top view of binary tree Top view of a binary tree is the set of nodes visible when the tree is viewed from the top. Given a binary tree, the task is to print the sum of nodes in top view.Examples: Input: 1 / \ 2 3 / \ \ 4 5 6 Output: 16 Input: 1 / \ 2 3 \ 4 \ 5 \ 6 Output: 12 Approach: The idea is to put nodes of same hori
13 min read