Sum of all subarrays of size K
Last Updated :
11 Jul, 2022
Given an array arr[] and an integer K, the task is to calculate the sum of all subarrays of size K.
Examples:
Input: arr[] = {1, 2, 3, 4, 5, 6}, K = 3
Output: 6 9 12 15
Explanation:
All subarrays of size k and their sum:
Subarray 1: {1, 2, 3} = 1 + 2 + 3 = 6
Subarray 2: {2, 3, 4} = 2 + 3 + 4 = 9
Subarray 3: {3, 4, 5} = 3 + 4 + 5 = 12
Subarray 4: {4, 5, 6} = 4 + 5 + 6 = 15
Input: arr[] = {1, -2, 3, -4, 5, 6}, K = 2
Output: -1, 1, -1, 1, 11
Explanation:
All subarrays of size K and their sum:
Subarray 1: {1, -2} = 1 - 2 = -1
Subarray 2: {-2, 3} = -2 + 3 = -1
Subarray 3: {3, 4} = 3 - 4 = -1
Subarray 4: {-4, 5} = -4 + 5 = 1
Subarray 5: {5, 6} = 5 + 6 = 11
Naive Approach: The naive approach will be to generate all subarrays of size K and find the sum of each subarray using iteration.
Below is the implementation of the above approach:
C++
// C++ implementation to find the sum
// of all subarrays of size K
#include <iostream>
using namespace std;
// Function to find the sum of
// all subarrays of size K
int calcSum(int arr[], int n, int k)
{
// Loop to consider every
// subarray of size K
for (int i = 0; i <= n - k; i++) {
// Initialize sum = 0
int sum = 0;
// Calculate sum of all elements
// of current subarray
for (int j = i; j < k + i; j++)
sum += arr[j];
// Print sum of each subarray
cout << sum << " ";
}
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
// Function Call
calcSum(arr, n, k);
return 0;
}
Java
// Java implementation to find the sum
// of all subarrays of size K
class GFG{
// Function to find the sum of
// all subarrays of size K
static void calcSum(int arr[], int n, int k)
{
// Loop to consider every
// subarray of size K
for (int i = 0; i <= n - k; i++) {
// Initialize sum = 0
int sum = 0;
// Calculate sum of all elements
// of current subarray
for (int j = i; j < k + i; j++)
sum += arr[j];
// Print sum of each subarray
System.out.print(sum+ " ");
}
}
// Driver Code
public static void main(String[] args)
{
int arr[] = { 1, 2, 3, 4, 5, 6 };
int n = arr.length;
int k = 3;
// Function Call
calcSum(arr, n, k);
}
}
// This code is contributed by Rajput-Ji
C#
// C# implementation to find the sum
// of all subarrays of size K
using System;
class GFG
{
// Function to find the sum of
// all subarrays of size K
static void calcSum(int[] arr, int n, int k)
{
// Loop to consider every
// subarray of size K
for (int i = 0; i <= n - k; i++) {
// Initialize sum = 0
int sum = 0;
// Calculate sum of all elements
// of current subarray
for (int j = i; j < k + i; j++)
sum += arr[j];
// Print sum of each subarray
Console.Write(sum + " ");
}
}
// Driver Code
static void Main()
{
int[] arr = new int[] { 1, 2, 3, 4, 5, 6 };
int n = arr.Length;
int k = 3;
// Function Call
calcSum(arr, n, k);
}
}
// This code is contributed by shubhamsingh10
Python3
# Python3 implementation to find the sum
# of all subarrays of size K
# Function to find the sum of
# all subarrays of size K
def calcSum(arr, n, k):
# Loop to consider every
# subarray of size K
for i in range(n - k + 1):
# Initialize sum = 0
sum = 0
# Calculate sum of all elements
# of current subarray
for j in range(i, k + i):
sum += arr[j]
# Print sum of each subarray
print(sum, end=" ")
# Driver Code
arr=[1, 2, 3, 4, 5, 6]
n = len(arr)
k = 3
# Function Call
calcSum(arr, n, k)
# This code is contributed by mohit kumar 29
JavaScript
<script>
// JavaScript implementation to find the sum
// of all subarrays of size K
// Function to find the sum of
// all subarrays of size K
function calcSum(arr, n, k)
{
// Loop to consider every
// subarray of size K
for (var i = 0; i <= n - k; i++) {
// Initialize sum = 0
var sum = 0;
// Calculate sum of all elements
// of current subarray
for (var j = i; j < k + i; j++)
sum += arr[j];
// Print sum of each subarray
document.write(sum + " ");
}
}
// Driver Code
var arr = [ 1, 2, 3, 4, 5, 6 ];
var n = arr.length;
var k = 3;
// Function Call
calcSum(arr, n, k);
</script>
Performance Analysis:
- Time Complexity: As in the above approach, There are two loops, where first loop runs (N - K) times and second loop runs for K times. Hence the Time Complexity will be O(N*K).
- Auxiliary Space Complexity: As in the above approach. There is no extra space used. Hence the auxiliary space complexity will be O(1).
Efficient Approach: Using Sliding Window The idea is to use the sliding window approach to find the sum of all possible subarrays in the array.
- For each size in the range [0, K], find the sum of the first window of size K and store it in an array.
- Then for each size in the range [K, N], add the next element which contributes into the sliding window and subtract the element which pops out from the window.
// Adding the element which
// adds into the new window
sum = sum + arr[j]
// Subtracting the element which
// pops out from the window
sum = sum - arr[j-k]
where sum is the variable to store the result
arr is the given array
j is the loop variable in range [K, N]
Below is the implementation of the above approach:
C++
// C++ implementation to find the sum
// of all subarrays of size K
#include <iostream>
using namespace std;
// Function to find the sum of
// all subarrays of size K
int calcSum(int arr[], int n, int k)
{
// Initialize sum = 0
int sum = 0;
// Consider first subarray of size k
// Store the sum of elements
for (int i = 0; i < k; i++)
sum += arr[i];
// Print the current sum
cout << sum << " ";
// Consider every subarray of size k
// Remove first element and add current
// element to the window
for (int i = k; i < n; i++) {
// Add the element which enters
// into the window and subtract
// the element which pops out from
// the window of the size K
sum = (sum - arr[i - k]) + arr[i];
// Print the sum of subarray
cout << sum << " ";
}
}
// Drivers Code
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
// Function Call
calcSum(arr, n, k);
return 0;
}
Java
// Java implementation to find the sum
// of all subarrays of size K
class GFG{
// Function to find the sum of
// all subarrays of size K
static void calcSum(int arr[], int n, int k)
{
// Initialize sum = 0
int sum = 0;
// Consider first subarray of size k
// Store the sum of elements
for (int i = 0; i < k; i++)
sum += arr[i];
// Print the current sum
System.out.print(sum+ " ");
// Consider every subarray of size k
// Remove first element and add current
// element to the window
for (int i = k; i < n; i++) {
// Add the element which enters
// into the window and subtract
// the element which pops out from
// the window of the size K
sum = (sum - arr[i - k]) + arr[i];
// Print the sum of subarray
System.out.print(sum+ " ");
}
}
// Drivers Code
public static void main(String[] args)
{
int arr[] = { 1, 2, 3, 4, 5, 6 };
int n = arr.length;
int k = 3;
// Function Call
calcSum(arr, n, k);
}
}
// This code is contributed by sapnasingh4991
Python3
# Python3 implementation to find the sum
# of all subarrays of size K
# Function to find the sum of
# all subarrays of size K
def calcSum(arr, n, k):
# Initialize sum = 0
sum = 0
# Consider first subarray of size k
# Store the sum of elements
for i in range( k):
sum += arr[i]
# Print the current sum
print( sum ,end= " ")
# Consider every subarray of size k
# Remove first element and add current
# element to the window
for i in range(k,n):
# Add the element which enters
# into the window and subtract
# the element which pops out from
# the window of the size K
sum = (sum - arr[i - k]) + arr[i]
# Print the sum of subarray
print( sum ,end=" ")
# Drivers Code
if __name__ == "__main__":
arr = [ 1, 2, 3, 4, 5, 6 ]
n = len(arr)
k = 3
# Function Call
calcSum(arr, n, k)
# This code is contributed by chitranayal
C#
// C# implementation to find the sum
// of all subarrays of size K
using System;
class GFG{
// Function to find the sum of
// all subarrays of size K
static void calcSum(int []arr, int n, int k)
{
// Initialize sum = 0
int sum = 0;
// Consider first subarray of size k
// Store the sum of elements
for (int i = 0; i < k; i++)
sum += arr[i];
// Print the current sum
Console.Write(sum+ " ");
// Consider every subarray of size k
// Remove first element and add current
// element to the window
for (int i = k; i < n; i++) {
// Add the element which enters
// into the window and subtract
// the element which pops out from
// the window of the size K
sum = (sum - arr[i - k]) + arr[i];
// Print the sum of subarray
Console.Write(sum + " ");
}
}
// Drivers Code
public static void Main(String[] args)
{
int []arr = { 1, 2, 3, 4, 5, 6 };
int n = arr.Length;
int k = 3;
// Function Call
calcSum(arr, n, k);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// Javascript implementation to find the sum
// of all subarrays of size K
// Function to find the sum of
// all subarrays of size K
function calcSum(arr, n, k)
{
// Initialize sum = 0
var sum = 0;
// Consider first subarray of size k
// Store the sum of elements
for (var i = 0; i < k; i++)
sum += arr[i];
// Print the current sum
document.write( sum + " ");
// Consider every subarray of size k
// Remove first element and add current
// element to the window
for (var i = k; i < n; i++) {
// Add the element which enters
// into the window and subtract
// the element which pops out from
// the window of the size K
sum = (sum - arr[i - k]) + arr[i];
// Print the sum of subarray
document.write( sum + " ");
}
}
// Drivers Code
var arr = [ 1, 2, 3, 4, 5, 6 ];
var n = arr.length;
var k = 3;
// Function Call
calcSum(arr, n, k);
// This code is contributed by noob2000.
</script>
Performance Analysis:
- Time Complexity: As in the above approach. There is one loop which take O(N) time. Hence the Time Complexity will be O(N).
- Auxiliary Space Complexity: As in the above approach. There is no extra space used. Hence the auxiliary space complexity will be O(1).
Related Topic: Subarrays, Subsequences, and Subsets in Array
Similar Reads
Sum of all Subarrays Given an integer array arr[], find the sum of all sub-arrays of the given array. Examples: Input: arr[] = [1, 4, 5, 3, 2]Output: 116Explanation: Sum of all possible subarrays of the array [1, 4, 5, 3, 2] is 116..Input: arr[] = [1, 2, 3, 4]Output: 50Explanation: Sum of all possible subarrays of the a
6 min read
Sum of all subsets of a given size (=K) Given an array arr[] consisting of N integers and a positive integer K, the task is to find the sum of all the subsets of size K. Examples: Input: arr[] = {1, 2, 4, 5}, K = 2Output: 36Explanation:The subsets of size K(= 2) are = {1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {4, 5}. Now, the sum of all sub
7 min read
Sum of products of all possible Subarrays Given an array arr[] of N positive integers, the task is to find the sum of the product of elements of all the possible subarrays. Examples: Input: arr[] = {1, 2, 3}Output: 20Explanation: Possible Subarrays are: {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}.Products of all the above subarrays are 1, 2, 3
6 min read
Sum of bitwise AND of all subarrays Given an array consisting of N positive integers, find the sum of bit-wise and of all possible sub-arrays of the array. Examples: Input : arr[] = {1, 5, 8} Output : 15 Bit-wise AND of {1} = 1 Bit-wise AND of {1, 5} = 1 Bit-wise AND of {1, 5, 8} = 0 Bit-wise AND of {5} = 5 Bit-wise AND of {5, 8} = 0
8 min read
Subarray of size k with given sum Given an array arr[], an integer K and a Sum. The task is to check if there exists any subarray with K elements whose sum is equal to the given sum. If any of the subarray with size K has the sum equal to the given sum then print YES otherwise print NO. Examples: Input: arr[] = {1, 4, 2, 10, 2, 3, 1
10 min read