Sum of all parent-child differences in a Binary Tree
Last Updated :
16 Aug, 2022
Given a binary tree, find the sum of all parent-child differences for all the non-leaf nodes of the given binary tree.
Note that parent-child difference is (parent node's value - (sum of child node's values)).
Examples:
Input:
1
/ \
2 3
/ \ / \
4 5 6 7
\
8
Output: -23
1st parent-child difference = 1 -(2 + 3) = -4
2nd parent-child difference = 2 -(4 + 5) = -7
3rd parent-child difference = 3 -(6 + 7) = -10
4th parent-child difference = 6 - 8 = -2
Total sum = -23
Input:
1
/ \
2 3
\ /
5 6
Output: -10
Naive Approach: The idea is to traverse the tree in any fashion and check if the node is the leaf node or not. If the node is non-leaf node, add (node data - sum of children node data) to result.
Efficient Approach: In the final result, a close analysis suggests that each internal node ( nodes which are neither root nor leaf) once gets treated as a child and once as a parent hence their contribution in the final result is zero. Also, the root is only treated as a parent once and in a similar fashion, all leaf nodes are treated as children once. Hence, the final result is (value of root - sum of all leaf nodes).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Structure for a binary tree node
struct Node {
int data;
Node *left, *right;
};
// Returns a new node
Node* newNode(int data)
{
Node* temp = new Node();
temp->data = data;
temp->left = temp->right = NULL;
}
// Utility function which calculates
// the sum of all leaf nodes
void leafSumFunc(Node* root, int* leafSum)
{
if (!root)
return;
// Add root data to sum if
// root is a leaf node
if (!root->left && !root->right)
*leafSum += root->data;
// Recursively check in the left
// and the right sub-tree
leafSumFunc(root->left, leafSum);
leafSumFunc(root->right, leafSum);
}
// Function to return the required result
int sumParentChildDiff(Node* root)
{
// If root is null
if (!root)
return 0;
// If only node is the root node
if (!root->left && !root->right)
return root->data;
// Find the sum of all the leaf nodes
int leafSum = 0;
leafSumFunc(root, &leafSum);
// Root - sum of all the leaf nodes
return (root->data - leafSum);
}
// Driver code
int main()
{
// Construct binary tree
Node* root = newNode(1);
root->left = newNode(2);
root->left->left = newNode(4);
root->left->right = newNode(5);
root->right = newNode(3);
root->right->right = newNode(7);
root->right->left = newNode(6);
cout << sumParentChildDiff(root);
return 0;
}
Java
// Java implementation of the approach
class GFG
{
// Structure for a binary tree node
static class Node
{
int data;
Node left, right;
};
// Returns a new node
static Node newNode(int data)
{
Node temp = new Node();
temp.data = data;
temp.left = temp.right = null;
return temp;
}
static int leafSum;
// Utility function which calculates
// the sum of all leaf nodes
static void leafSumFunc(Node root )
{
if (root == null)
return;
// Add root data to sum if
// root is a leaf node
if (root.left == null && root.right == null)
leafSum += root.data;
// Recursively check in the left
// and the right sub-tree
leafSumFunc(root.left);
leafSumFunc(root.right);
}
// Function to return the required result
static int sumParentChildDiff(Node root)
{
// If root is null
if (root == null)
return 0;
// If only node is the root node
if (root.left == null && root.right == null)
return root.data;
// Find the sum of all the leaf nodes
leafSum = 0;
leafSumFunc(root);
// Root - sum of all the leaf nodes
return (root.data - leafSum);
}
// Driver code
public static void main(String args[])
{
// Construct binary tree
Node root = newNode(1);
root.left = newNode(2);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right = newNode(3);
root.right.right = newNode(7);
root.right.left = newNode(6);
System.out.println( sumParentChildDiff(root));
}
}
// This code is contributed by Arnab Kundu
Python3
# Python3 implementation of the approach
# Structure for a binary tree node
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# Utility function which calculates
# the sum of all leaf nodes
def leafSumFunc(root, leafSum):
if not root:
return 0
# Add root data to sum
# if root is a leaf node
if not root.left and not root.right:
leafSum += root.data
# Recursively check in the
# left and the right sub-tree
leafSum = max(leafSumFunc(root.left,
leafSum), leafSum)
leafSum = max(leafSumFunc(root.right,
leafSum), leafSum)
return leafSum
# Function to return the required result
def sumParentChildDiff(root):
# If root is None
if not root:
return 0
# If only node is the root node
if not root.left and not root.right:
return root.data
# Find the sum of all the leaf nodes
leafSum = leafSumFunc(root, 0)
# Root - sum of all the leaf nodes
return root.data - leafSum
# Driver code
if __name__ == "__main__":
# Construct binary tree
root = Node(1)
root.left = Node(2)
root.left.left = Node(4)
root.left.right = Node(5)
root.right = Node(3)
root.right.right = Node(7)
root.right.left = Node(6)
print(sumParentChildDiff(root))
# This code is contributed by Rituraj Jain
C#
// C# implementation of the approach
using System;
class GFG
{
// Structure for a binary tree node
public class Node
{
public int data;
public Node left, right;
};
// Returns a new node
static Node newNode(int data)
{
Node temp = new Node();
temp.data = data;
temp.left = temp.right = null;
return temp;
}
static int leafSum;
// Utility function which calculates
// the sum of all leaf nodes
static void leafSumFunc(Node root )
{
if (root == null)
return;
// Add root data to sum if
// root is a leaf node
if (root.left == null && root.right == null)
leafSum += root.data;
// Recursively check in the left
// and the right sub-tree
leafSumFunc(root.left);
leafSumFunc(root.right);
}
// Function to return the required result
static int sumParentChildDiff(Node root)
{
// If root is null
if (root == null)
return 0;
// If only node is the root node
if (root.left == null && root.right == null)
return root.data;
// Find the sum of all the leaf nodes
leafSum = 0;
leafSumFunc(root);
// Root - sum of all the leaf nodes
return (root.data - leafSum);
}
// Driver code
public static void Main(String []args)
{
// Construct binary tree
Node root = newNode(1);
root.left = newNode(2);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right = newNode(3);
root.right.right = newNode(7);
root.right.left = newNode(6);
Console.WriteLine( sumParentChildDiff(root));
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript implementation of the approach
// Structure for a binary tree node
class Node
{
constructor(data) {
this.left = null;
this.right = null;
this.data = data;
}
}
// Returns a new node
function newNode(data)
{
let temp = new Node(data);
return temp;
}
let leafSum;
// Utility function which calculates
// the sum of all leaf nodes
function leafSumFunc(root)
{
if (root == null)
return;
// Add root data to sum if
// root is a leaf node
if (root.left == null && root.right == null)
leafSum += root.data;
// Recursively check in the left
// and the right sub-tree
leafSumFunc(root.left);
leafSumFunc(root.right);
}
// Function to return the required result
function sumParentChildDiff(root)
{
// If root is null
if (root == null)
return 0;
// If only node is the root node
if (root.left == null && root.right == null)
return root.data;
// Find the sum of all the leaf nodes
leafSum = 0;
leafSumFunc(root);
// Root - sum of all the leaf nodes
return (root.data - leafSum);
}
// Construct binary tree
let root = newNode(1);
root.left = newNode(2);
root.left.left = newNode(4);
root.left.right = newNode(5);
root.right = newNode(3);
root.right.right = newNode(7);
root.right.left = newNode(6);
document.write( sumParentChildDiff(root));
</script>
Time complexity: O(N) where N is no of nodes in given binary tree