Open In App

Sum and product of k smallest and k largest composite numbers in the array

Last Updated : 11 Jul, 2025
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Given an integer k and an array of integers arr, the task is to find the sum and product of k smallest and k largest composite numbers in the array. 
Assume that there are at least k composite numbers in the array.

Examples:

Input: arr[] = {2, 5, 6, 8, 10, 11}, k = 2 
Output: Sum of k-minimum composite numbers is 14 
Sum of k-maximum composite numbers is 18 
Product of k-minimum composite numbers is 48 
Product of k-maximum composite numbers is 80 
{6, 8, 10} are the only composite numbers from the array. {6, 8} are the 2 smallest and {8, 10} are the 2 largest among them.

Input: arr[] = {6, 4, 2, 12, 13, 5, 19, 10}, k = 3 
Output: Sum of k-minimum composite numbers is 20 
Sum of k-maximum composite numbers is 28 
Product of k-minimum composite numbers is 240 
Product of k-maximum composite numbers is 720 

Approach: 

  1. Using Sieve of Eratosthenes generate a boolean vector upto the size of the maximum element from the array which can be used to check whether a number is composite or not.
  2. Also set 0 and 1 as prime so that they don’t get counted as composite numbers.
  3. Now traverse the array and insert all the numbers which are composite in two heaps, a min heap and a max heap.
  4. Now, pop out top k elements from the min heap and take the sum and product of the minimum k composite numbers.
  5. Do the same with the max heap to get the sum and product of the max k composite numbers.
  6. Finally, print the results.

Below is the implementation of the above approach: 

C++
// C++ program to find the sum and
// product of k smallest and k largest
// composite numbers in an array
#include <bits/stdc++.h>
using namespace std;

vector<bool> SieveOfEratosthenes(int max_val)
{
    // Create a boolean vector "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
    for (int p = 2; p * p <= max_val; p++) {

        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {

            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
    return prime;
}

// Function that calculates the sum
// and product of k smallest and k
// largest composite numbers in an array
void compositeSumAndProduct(int arr[], int n, int k)
{
    // Find maximum value in the array
    int max_val = *max_element(arr, arr + n);

    // Use sieve to find all prime numbers
    // less than or equal to max_val
    vector<bool> prime = SieveOfEratosthenes(max_val);

    // Set 0 and 1 as primes so that
    // they don't get counted as 
    // composite numbers
    prime[0] = true;
    prime[1] = true;

    // Max Heap to store all the composite numbers
    priority_queue<int> maxHeap;

    // Min Heap to store all the composite numbers
    priority_queue<int, vector<int>, greater<int>> 
        minHeap;

    // Push all the composite numbers 
    // from the array to the heaps
    for (int i = 0; i < n; i++)
        if (!prime[arr[i]]) {
            minHeap.push(arr[i]);
            maxHeap.push(arr[i]);
        }
    long long int minProduct = 1
        , maxProduct = 1
        , minSum = 0
        , maxSum = 0;
    while (k--) {

        // Calculate the products
        minProduct *= minHeap.top();
        maxProduct *= maxHeap.top();

        // Calculate the sum
        minSum += minHeap.top();
        maxSum += maxHeap.top();

        // Pop the current minimum element
        minHeap.pop();

        // Pop the current maximum element
        maxHeap.pop();
    }

    cout << "Sum of k-minimum composite numbers is " 
         << minSum << "\n";
    cout << "Sum of k-maximum composite numbers is " 
         << maxSum << "\n";
    cout << "Product of k-minimum composite numbers is " 
         << minProduct << "\n";
    cout << "Product of k-maximum composite numbers is " 
         << maxProduct;
}

// Driver code
int main()
{

    int arr[] = { 4, 2, 12, 13, 5, 19 };
    int n = sizeof(arr) / sizeof(arr[0]);

    int k = 3;

    compositeSumAndProduct(arr, n, k);

    return 0;
}
Java
// Java program to find the sum and 
// product of k smallest and k largest 
// composite numbers in an array 
import java.util.*;

class GFG
{
    static boolean[] SieveOfEratosThenes(int max_val) 
    {

        // Create a boolean vector "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        boolean[] prime = new boolean[max_val + 1];
        Arrays.fill(prime, true);

        for (int p = 2; p * p <= max_val; p++) 
        {

            // If prime[p] is not changed, then
            // it is a prime
            if (prime[p]) 
            {

                // Update all multiples of p
                for (int i = p * 2; i <= max_val; i += p)
                    prime[i] = false;
            }
        }
        return prime;
    }

    // Function that calculates the sum
    // and product of k smallest and k
    // largest composite numbers in an array
    static void compositeSumAndProduct(Integer[] arr, 
                                       int n, int k) 
    {

        // Find maximum value in the array
        int max_val = Collections.max(Arrays.asList(arr));

        // Use sieve to find all prime numbers
        // less than or equal to max_val
        boolean[] prime = SieveOfEratosThenes(max_val);

        // Set 0 and 1 as primes so that
        // they don't get counted as
        // composite numbers
        prime[0] = true;
        prime[1] = true;

        // Max Heap to store all the composite numbers
        PriorityQueue<Integer> maxHeap = 
                  new PriorityQueue<Integer>((x, y) -> y - x);

        // Min Heap to store all the composite numbers
        PriorityQueue<Integer> minHeap = new PriorityQueue<>();

        // Push all the composite numbers
        // from the array to the heaps
        for (int i = 0; i < n; i++) 
        {
            if (!prime[arr[i]]) 
            {
                minHeap.add(arr[i]);
                maxHeap.add(arr[i]);
            }
        }

        long minProduct = 1, maxProduct = 1, 
                 minSum = 0, maxSum = 0;
        Integer lastMin = 0, lastMax = 0;
        while (k-- > 0) 
        {
            if (minHeap.peek() != null || 
                maxHeap.peek() != null)
            {

                // Calculate the products
                minProduct *= minHeap.peek();
                maxProduct *= maxHeap.peek();

                // Calculate the sum
                minSum += minHeap.peek();
                maxSum += maxHeap.peek();

                // Pop the current minimum element
                lastMin = minHeap.poll();

                // Pop the current maximum element
                lastMax = maxHeap.poll();
            } 
            else 
            {

                // when maxHeap or minHeap is exhausted 
                // then this condition will run
                minProduct *= lastMin;
                maxProduct *= lastMax;

                minSum += lastMin;
                maxSum += lastMax;
            }
        }

        System.out.println("Sum of k-minimum composite" + 
                                " numbers is " + minSum);
        System.out.println("Sum of k-maximum composite" + 
                                " numbers is " + maxSum);
        System.out.println("Product of k-minimum composite" + 
                                " numbers is " + minProduct);
        System.out.println("Product of k-maximum composite" + 
                                " numbers is " + maxProduct);
    }

    // Driver Code
    public static void main(String[] args)
    {
        Integer[] arr = { 4, 2, 12, 13, 5, 19 };
        int n = arr.length;
        int k = 3;

        compositeSumAndProduct(arr, n, k);
    }
}

// This code is contributed by
// sanjeev2552
Python3
# Python3 program to find the sum and
# product of k smallest and k largest
# composite numbers in an array
def SieveOfEratosthenes(max_val):
  
    # Create a boolean vector "prime[0..n]". A
    # value in prime[i] will finally be false
    # if i is Not a prime, else true.
    prime = [True for _ in range(max_val + 1)]
    for p in range(2, 1 + int(max_val ** 0.5)):
      
        # If prime[p] is not changed, then
        # it is a prime
        if prime[p]:

            # Update all multiples of p
            for i in range(2 * p, max_val + 1, p):

                prime[i] = False

    return prime

# Function that calculates the sum
# and product of k smallest and k
# largest composite numbers in an array
def compositeSumAndProduct(arr, n, k):

    # Find maximum value in the array
    max_val = max(arr)

    # Use sieve to find all prime numbers
    # less than or equal to max_val
    prime = SieveOfEratosthenes(max_val)

    # Set 0 and 1 as primes so that
    # they don't get counted as
    # composite numbers
    prime[0] = True
    prime[1] = True

    # Max Heap to store all the composite numbers
    maxHeap = []

    # Min Heap to store all the composite numbers
    minHeap = []

    # Push all the composite numbers
    # from the array to the heaps
    for i in range(n):
        if not prime[arr[i]]:
            minHeap.append(arr[i])
            maxHeap.append(arr[i])

    minHeap.sort()
    maxHeap.sort(reverse=True)

    minProduct = 1
    maxProduct = 1
    minSum = 0
    maxSum = 0
    lastMin = 0
    lastMax = 0

    while k > 0:

        if minHeap and maxHeap:
            # Calculate the products
            minProduct *= minHeap[0]
            maxProduct *= maxHeap[0]

            # Calculate the sum
            minSum += minHeap[0]
            maxSum += maxHeap[0]

            # Pop the current minimum element
            lastMin = minHeap.pop(0)

            # Pop the current maximum element
            lastMax = maxHeap.pop(0)

        else:
            minProduct *= lastMin
            maxProduct *= lastMax

            minSum += lastMin
            maxSum += lastMax

        k -= 1

    print("Sum of k-minimum composite numbers is", minSum)
    print("Sum of k-maximum composite numbers is", maxSum)
    print("Product of k-minimum composite numbers is", minProduct)
    print("Product of k-maximum composite numbers is", maxProduct)

# Driver code
arr = [4, 2, 12, 13, 5, 19]
n = len(arr)

k = 3

compositeSumAndProduct(arr, n, k)

# This code is contributed by phasing17
C#
// C# program to find the sum and 
// product of k smallest and k largest 
// composite numbers in an array 
using System;
using System.Linq;
using System.Collections.Generic;

class GFG
{
  static bool[] SieveOfEratosThenes(int max_val) 
  {

    // Create a boolean vector "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    bool[] prime = new bool[max_val + 1];
    for (int i = 0; i <= max_val; i++)
      prime[i] = true;

    for (int p = 2; p * p <= max_val; p++) 
    {

      // If prime[p] is not changed, then
      // it is a prime
      if (prime[p]) 
      {

        // Update all multiples of p
        for (int i = p * 2; i <= max_val; i += p)
          prime[i] = false;
      }
    }
    return prime;
  }

  // Function that calculates the sum
  // and product of k smallest and k
  // largest composite numbers in an array
  static void compositeSumAndProduct(int[] arr, 
                                     int n, int k) 
  {

    // Find maximum value in the array
    int max_val = arr.Max();

    // Use sieve to find all prime numbers
    // less than or equal to max_val
    bool[] prime = SieveOfEratosThenes(max_val);

    // Set 0 and 1 as primes so that
    // they don't get counted as
    // composite numbers
    prime[0] = true;
    prime[1] = true;

    // Max Heap to store all the composite numbers
    List<int> maxHeap = 
      new List<int>();

    // Min Heap to store all the composite numbers
    List<int> minHeap = new List<int>();

    // Push all the composite numbers
    // from the array to the heaps
    for (int i = 0; i < n; i++) 
    {
      if (!prime[arr[i]]) 
      {
        minHeap.Add(arr[i]);
        maxHeap.Add(arr[i]);
      }
    }

    minHeap = minHeap.OrderBy(a => a).ToList();
    maxHeap = maxHeap.OrderBy(a => -a).ToList();

    long minProduct = 1, maxProduct = 1, 
    minSum = 0, maxSum = 0;
    int lastMin = 0, lastMax = 0;
    while (k-- > 0) 
    {
      if (minHeap.Count != 0 || 
          maxHeap.Count != 0)
      {

        // Calculate the products
        minProduct *= minHeap[0];
        maxProduct *= maxHeap[0];

        // Calculate the sum
        minSum += minHeap[0];
        maxSum += maxHeap[0];

        // Pop the current minimum element
        lastMin = minHeap[0];
        minHeap.RemoveAt(0);

        // Pop the current maximum element
        lastMax = maxHeap[0];
        maxHeap.RemoveAt(0);
      } 
      else 
      {

        // when maxHeap or minHeap is exhausted 
        // then this condition will run
        minProduct *= lastMin;
        maxProduct *= lastMax;

        minSum += lastMin;
        maxSum += lastMax;
      }
    }

    Console.WriteLine("Sum of k-minimum composite" + 
                      " numbers is " + minSum);
    Console.WriteLine("Sum of k-maximum composite" + 
                      " numbers is " + maxSum);
    Console.WriteLine("Product of k-minimum composite" + 
                      " numbers is " + minProduct);
    Console.WriteLine("Product of k-maximum composite" + 
                      " numbers is " + maxProduct);
  }

  // Driver Code
  public static void Main(string[] args)
  {
    int[] arr = { 4, 2, 12, 13, 5, 19 };
    int n = arr.Length;
    int k = 3;

    compositeSumAndProduct(arr, n, k);
  }
}

// This code is contributed by
// phasing17
JavaScript
// JS program to find the sum and
// product of k smallest and k largest
// composite numbers in an array
function SieveOfEratosthenes(max_val)
{

    // Create a boolean vector "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    let prime = new Array(max_val + 1).fill(true);
    for (var p = 2; p * p <= max_val; p++) {

        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {

            // Update all multiples of p
            for (var i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
    return prime;
}

// Function that calculates the sum
// and product of k smallest and k
// largest composite numbers in an array
function compositeSumAndProduct(arr, n, k)
{
    // Find maximum value in the array
    let max_val =  Math.max(...arr) 

    // Use sieve to find all prime numbers
    // less than or equal to max_val
    let prime = SieveOfEratosthenes(max_val);

    // Set 0 and 1 as primes so that
    // they don't get counted as 
    // composite numbers
    prime[0] = true;
    prime[1] = true;

    // Max Heap to store all the composite numbers
    let maxHeap = [];

    // Min Heap to store all the composite numbers
    let minHeap = [];

    // Push all the composite numbers 
    // from the array to the heaps
    for (var i = 0; i < n; i++)
        if (!prime[arr[i]]) {
            minHeap.push(arr[i]);
            maxHeap.push(arr[i]);
        }
        
    minHeap.sort(function(a, b) { return a > b});
    maxHeap.sort(function(a, b) { return a < b});

    let minProduct = 1
        , maxProduct = 1
        , minSum = 0
        , maxSum = 0;
    while (k-- > 0) {
        
        // Calculate the products
        minProduct *= minHeap[0];
        maxProduct *= maxHeap[0];

        // Calculate the sum
        minSum += minHeap[0];
        maxSum += maxHeap[0];

        // Pop the current minimum element
        minHeap.shift();

        // Pop the current maximum element
        maxHeap.shift();
    }

    console.log("Sum of k-minimum composite numbers is " 
         + minSum)
    console.log("Sum of k-maximum composite numbers is " 
         + maxSum);
    console.log("Product of k-minimum composite numbers is " 
         + minProduct);
    console.log("Product of k-maximum composite numbers is " 
         + maxProduct);

}

// Driver code
let arr = [ 6, 4, 2, 12, 13, 5, 19, 10];
let n = arr.length;

let k = 3;

compositeSumAndProduct(arr, n, k);

// This code is contributed by phasing17

Output
Sum of k-minimum composite numbers is 28
Sum of k-maximum composite numbers is 20
Product of k-minimum composite numbers is 576
Product of k-maximum composite numbers is 192

Approach: Heap-based Selection of K-Smallest and K-Largest Composite Numbers

Here are the steps for the "Heap-based Selection of K-Smallest and K-Largest Composite Numbers" approach:

  1. Define a function is_composite(n) that takes an integer n as input and returns True if n is composite, i.e., if it has a factor other than 1 and itself.
  2. Define a function sum_product_k_smallest_largest_composite(arr, k) that takes an array of integers arr and an integer k as inputs and returns a tuple containing the sum and product of the k smallest and k largest composite numbers in arr.
  3. Initialize an empty list composite_nums.
  4. Iterate over the integers in arr, and for each integer num, check if it is composite using the is_composite() function. If num is composite, append it to the composite_nums list.
  5. Use the heapq.nsmallest(k, composite_nums) function to find the k smallest composite numbers in composite_nums. Assign the result to a variable k_smallest_composites.
  6. Use the heapq.nlargest(k, composite_nums) function to find the k largest composite numbers in composite_nums. Assign the result to a variable k_largest_composites.
  7. Calculate the sum of the k smallest composite numbers in k_smallest_composites, and assign the result to a variable sum_k_smallest.
  8. Calculate the sum of the k largest composite numbers in k_largest_composites, and assign the result to a variable sum_k_largest.
    Initialize variables product_k_smallest and product_k_largest to 1.
  9. Iterate over the integers in k_smallest_composites, and for each integer num, multiply it with product_k_smallest.
  10. Iterate over the integers in k_largest_composites, and for each integer num, multiply it with product_k_largest.
  11. Return a tuple containing sum_k_smallest, sum_k_largest, product_k_smallest, and product_k_largest.
Java
// Java equivalent of the above code
import java.util.PriorityQueue;

public class SumProductKSmallestLargestComposite {

    public static boolean isComposite(int n) {
        if (n < 2) {
            return false;
        }
        for (int i = 2; i <= Math.sqrt(n); i++) {
            if (n % i == 0) {
                return true;
            }
        }
        return false;
    }

    public static int[] sumProductKSmallestLargestComposite(int[] arr, int k) {
        PriorityQueue<Integer> minHeap = new PriorityQueue<>();
        PriorityQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> (b - a));

        for (int num : arr) {
            if (isComposite(num)) {
                minHeap.add(num);
                maxHeap.add(num);
            }
        }

        int sumKSmallest = 0;
        int sumKLargest = 0;
        int productKSmallest = 1;
        int productKLargest = 1;

        for (int i = 0; i < k; i++) {
            sumKSmallest += minHeap.peek();
            sumKLargest += maxHeap.peek();
            productKSmallest *= minHeap.poll();
            productKLargest *= maxHeap.poll();
        }

        return new int[] {sumKSmallest, sumKLargest, productKSmallest, productKLargest};
    }

    public static void main(String[] args) {
        int[] arr = {6, 4, 2, 12, 13, 5, 19, 10};
        int k = 3;
        int[] result = sumProductKSmallestLargestComposite(arr, k);

        System.out.println("Sum of k-minimum composite numbers: " + result[0]);
        System.out.println("Sum of k-maximum composite numbers: " + result[1]);
        System.out.println("Product of k-minimum composite numbers: " + result[2]);
        System.out.println("Product of k-maximum composite numbers: " + result[3]);
    }
}
Python3
import heapq
from math import sqrt

def is_composite(n):
    if n < 2:
        return False
    for i in range(2, int(sqrt(n))+1):
        if n % i == 0:
            return True
    return False

def sum_product_k_smallest_largest_composite(arr, k):
    composite_nums = []
    for num in arr:
        if is_composite(num):
            composite_nums.append(num)

    k_smallest_composites = heapq.nsmallest(k, composite_nums)
    k_largest_composites = heapq.nlargest(k, composite_nums)

    sum_k_smallest = sum(k_smallest_composites)
    sum_k_largest = sum(k_largest_composites)

    product_k_smallest = 1
    product_k_largest = 1

    for num in k_smallest_composites:
        product_k_smallest *= num

    for num in k_largest_composites:
        product_k_largest *= num

    return (sum_k_smallest, sum_k_largest, product_k_smallest, product_k_largest)
arr = [6, 4, 2, 12, 13, 5, 19, 10]
k = 3

result = sum_product_k_smallest_largest_composite(arr, k)

print("Sum of k-minimum composite numbers:", result[0])
print("Sum of k-maximum composite numbers:", result[1])
print("Product of k-minimum composite numbers:", result[2])
print("Product of k-maximum composite numbers:", result[3])
JavaScript
function is_composite(n) {
    if (n < 2) {
        return false;
    }
    for (let i = 2; i <= Math.sqrt(n); i++) {
        if (n % i === 0) {
            return true;
        }
    }
    return false;
}

function sum_product_k_smallest_largest_composite(arr, k) {
    let composite_nums = [];
    for (let num of arr) {
        if (is_composite(num)) {
            composite_nums.push(num);
        }
    }

    let k_smallest_composites = composite_nums.slice(0).sort((a, b) => a - b).slice(0, k);
    let k_largest_composites = composite_nums.slice(0).sort((a, b) => b - a).slice(0, k);

    let sum_k_smallest = k_smallest_composites.reduce((a, b) => a + b, 0);
    let sum_k_largest = k_largest_composites.reduce((a, b) => a + b, 0);

    let product_k_smallest = k_smallest_composites.reduce((a, b) => a * b, 1);
    let product_k_largest = k_largest_composites.reduce((a, b) => a * b, 1);

    return [sum_k_smallest, sum_k_largest, product_k_smallest, product_k_largest];
}

let arr = [6, 4, 2, 12, 13, 5, 19, 10];
let k = 3;

let result = sum_product_k_smallest_largest_composite(arr, k);

console.log("Sum of k-minimum composite numbers:", result[0]);
console.log("Sum of k-maximum composite numbers:", result[1]);
console.log("Product of k-minimum composite numbers:", result[2]);
console.log("Product of k-maximum composite numbers:", result[3]);
C++
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#include <cmath>

using namespace std;

bool isComposite(int n) {
    if (n < 2) {
        return false;
    }
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0) {
            return true;
        }
    }
    return false;
}

vector<int> sumProductKSmallestLargestComposite(vector<int> arr, int k) {
    priority_queue<int, vector<int>, greater<int>> minHeap;
    priority_queue<int, vector<int>, less<int>> maxHeap;

    for (int num : arr) {
        if (isComposite(num)) {
            minHeap.push(num);
            maxHeap.push(num);
        }
    }

    int sumKSmallest = 0;
    int sumKLargest = 0;
    int productKSmallest = 1;
    int productKLargest = 1;

    for (int i = 0; i < k; i++) {
        sumKSmallest += minHeap.top();
        sumKLargest += maxHeap.top();
        productKSmallest *= minHeap.top();
        productKLargest *= maxHeap.top();
        minHeap.pop();
        maxHeap.pop();
    }

    return {sumKSmallest, sumKLargest, productKSmallest, productKLargest};
}

int main() {
    vector<int> arr = {6, 4, 2, 12, 13, 5, 19, 10};
    int k = 3;
    vector<int> result = sumProductKSmallestLargestComposite(arr, k);

    cout << "Sum of k-minimum composite numbers: " << result[0] << endl;
    cout << "Sum of k-maximum composite numbers: " << result[1] << endl;
    cout << "Product of k-minimum composite numbers: " << result[2] << endl;
    cout << "Product of k-maximum composite numbers: " << result[3] << endl;

    return 0;
}
C#
using System;
using System.Collections.Generic;
using System.Linq;

public class Program {

    // Function to check if a number n is
    // composite or not
    public static bool IsComposite(int n)
    {
        if (n < 2) {
            return false;
        }
        for (int i = 2; i <= Math.Sqrt(n); i++) {
            if (n % i == 0) {
                return true;
            }
        }
        return false;
    }

    // Function to find the sum and product
    // of K smallest and largest composite
    public static List<int>
    SumProductKSmallestLargestComposite(List<int> arr,
                                        int k)
    {
        List<int> compositeNums = new List<int>();
        foreach(int num in arr)
        {
            if (IsComposite(num)) {
                compositeNums.Add(num);
            }
        }

        List<int> kSmallestComposites
            = compositeNums.OrderBy(x = > x)
                  .Take(k)
                  .ToList();
        List<int> kLargestComposites
            = compositeNums.OrderByDescending(x = > x)
                  .Take(k)
                  .ToList();

        int sumKSmallest = kSmallestComposites.Sum();
        int sumKLargest = kLargestComposites.Sum();

        int productKSmallest
            = kSmallestComposites.Aggregate((x, y) =
                                                > x * y);
        int productKLargest = kLargestComposites.Aggregate(
            (x, y) = > x * y);

        return new List<int>{ sumKSmallest, sumKLargest,
                              productKSmallest,
                              productKLargest };
    }

    // Driver Code
    public static void Main()
    {
        List<int> arr
            = new List<int>{ 6, 4, 2, 12, 13, 5, 19, 10 };
        int k = 3;
        List<int> result
            = SumProductKSmallestLargestComposite(arr, k);

        Console.WriteLine(
            "Sum of k-minimum composite numbers: "
            + result[0]);
        Console.WriteLine(
            "Sum of k-maximum composite numbers: "
            + result[1]);
        Console.WriteLine(
            "Product of k-minimum composite numbers: "
            + result[2]);
        Console.WriteLine(
            "Product of k-maximum composite numbers: "
            + result[3]);
    }
}

Output
Sum of k-minimum composite numbers: 20
Sum of k-maximum composite numbers: 28
Product of k-minimum composite numbers: 240
Product of k-maximum composite numbers: 720

Time Complexity: O(n * sqrt(max(arr)) + k * log(n))
Auxiliary Space: O(n + k)


Similar Reads