Sum and Product of all Prime Nodes of a Singly Linked List
Last Updated :
30 Nov, 2023
Given a singly linked list containing N nodes, the task is to find the sum and product of all nodes from the list which are prime.
Examples:
Input : List = 15 -> 16 -> 6 -> 7 -> 17
Output : Product = 119, Sum = 24
Prime nodes are 7, 17.
Input : List = 15 -> 3 -> 4 -> 2 -> 9
Output : Product = 6, Sum = 5
Approach: The idea is to traverse the nodes of the singly linked list one by one and check if the current node is prime or not. Find the sum and product of the data of the nodes which are prime.
Below is the implementation of above idea:
C++
// C++ implementation to find sum and
// product of all of prime nodes of
// the singly linked list
#include <bits/stdc++.h>
using namespace std;
// Node of the singly linked list
struct Node {
int data;
Node* next;
};
// Function to insert a node at the beginning
// of the singly Linked List
void push(Node** head_ref, int new_data)
{
// allocate node
Node* new_node = (Node*)malloc(sizeof(struct Node));
// put in the data
new_node->data = new_data;
// link the old list of the new node
new_node->next = (*head_ref);
// move the head to point to the new node
(*head_ref) = new_node;
}
// Function to check if a number is prime
bool isPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
// Function to find sum and product of all
// prime nodes of the singly linked list
void sumAndProduct(Node* head_ref)
{
int prod = 1;
int sum = 0;
Node* ptr = head_ref;
// Traverse the linked list
while (ptr != NULL) {
// if current node is prime,
// Find sum and product
if (isPrime(ptr->data)) {
prod *= ptr->data;
sum += ptr->data;
}
ptr = ptr->next;
}
cout << "Sum = " << sum << endl;
cout << "Product = " << prod;
}
// Driver program
int main()
{
// start with the empty list
Node* head = NULL;
// create the linked list
// 15 -> 16 -> 7 -> 6 -> 17
push(&head, 17);
push(&head, 7);
push(&head, 6);
push(&head, 16);
push(&head, 15);
sumAndProduct(head);
return 0;
}
Java
// Java implementation to find sum and
// product of all of prime nodes of
// the singly linked list
class GFG
{
// Node of the singly linked list
static class Node
{
int data;
Node next;
};
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
// allocate node
Node new_node =new Node();
// put in the data
new_node.data = new_data;
// link the old list of the new node
new_node.next = (head_ref);
// move the head to point to the new node
(head_ref) = new_node;
return head_ref;
}
// Function to check if a number is prime
static boolean isPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
// Function to find sum and product of all
// prime nodes of the singly linked list
static void sumAndProduct(Node head_ref)
{
int prod = 1;
int sum = 0;
Node ptr = head_ref;
// Traverse the linked list
while (ptr != null)
{
// if current node is prime,
// Find sum and product
if (isPrime(ptr.data))
{
prod *= ptr.data;
sum += ptr.data;
}
ptr = ptr.next;
}
System.out.println("Sum = " + sum );
System.out.println( "Product = " + prod);
}
// Driver code
public static void main(String args[])
{
// start with the empty list
Node head = null;
// create the linked list
// 15 . 16 . 7 . 6 . 17
head=push(head, 17);
head=push(head, 7);
head=push(head, 6);
head=push(head, 16);
head=push(head, 15);
sumAndProduct(head);
}
}
// This code is contributed by Arnab Kundu
Python
# Python implementation to find sum and
# product of all of prime nodes of
# the singly linked list
# Link list node
class Node:
def __init__(self, data):
self.data = data
self.next = next
# Function to insert a node at the beginning
# of the singly Linked List
def push( head_ref, new_data) :
# allocate node
new_node =Node(0)
# put in the data
new_node.data = new_data
# link the old list of the new node
new_node.next = (head_ref)
# move the head to point to the new node
(head_ref) = new_node
return head_ref
# Function to check if a number is prime
def isPrime(n) :
# Corner cases
if (n <= 1) :
return False
if (n <= 3) :
return True
# This is checked so that we can skip
# middle five numbers in below loop
if (n % 2 == 0 or n % 3 == 0) :
return False
i = 5
while ( i * i <= n) :
if (n % i == 0 or n % (i + 2) == 0) :
return False
i = i + 6
return True
# Function to find sum and product of all
# prime nodes of the singly linked list
def sumAndProduct(head_ref) :
prod = 1
sum = 0
ptr = head_ref
# Traverse the linked list
while (ptr != None):
# if current node is prime,
# Find sum and product
if (isPrime(ptr.data)):
prod *= ptr.data
sum += ptr.data
ptr = ptr.next
print("Sum = " , sum )
print( "Product = " , prod)
# Driver code
# start with the empty list
head = None
# create the linked list
# 15 . 16 . 7 . 6 . 17
head = push(head, 17)
head = push(head, 7)
head = push(head, 6)
head = push(head, 16)
head = push(head, 15)
sumAndProduct(head)
# This code is contributed by Arnab Kundu
C#
// C# implementation to find sum and
// product of all of prime nodes of
// the singly linked list
using System;
class GFG
{
// Node of the singly linked list
public class Node
{
public int data;
public Node next;
};
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
// allocate node
Node new_node =new Node();
// put in the data
new_node.data = new_data;
// link the old list of the new node
new_node.next = (head_ref);
// move the head to point to the new node
(head_ref) = new_node;
return head_ref;
}
// Function to check if a number is prime
static bool isPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
// Function to find sum and product of all
// prime nodes of the singly linked list
static void sumAndProduct(Node head_ref)
{
int prod = 1;
int sum = 0;
Node ptr = head_ref;
// Traverse the linked list
while (ptr != null)
{
// if current node is prime,
// Find sum and product
if (isPrime(ptr.data))
{
prod *= ptr.data;
sum += ptr.data;
}
ptr = ptr.next;
}
Console.WriteLine("Sum = " + sum);
Console.WriteLine( "Product = " + prod);
}
// Driver code
public static void Main(String []args)
{
// start with the empty list
Node head = null;
// create the linked list
// 15 . 16 . 7 . 6 . 17
head = push(head, 17);
head = push(head, 7);
head = push(head, 6);
head = push(head, 16);
head = push(head, 15);
sumAndProduct(head);
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// javascript implementation to find sum and
// product of all of prime nodes of
// the singly linked list // Node of the singly linked list
class Node {
constructor() {
this.data = 0;
this.next = null;
}
}
// Function to insert a node at the beginning
// of the singly Linked List
function push(head_ref , new_data) {
// allocate node
var new_node = new Node();
// put in the data
new_node.data = new_data;
// link the old list of the new node
new_node.next = (head_ref);
// move the head to point to the new node
(head_ref) = new_node;
return head_ref;
}
// Function to check if a number is prime
function isPrime(n) {
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
// Function to find sum and product of all
// prime nodes of the singly linked list
function sumAndProduct(head_ref) {
var prod = 1;
var sum = 0;
var ptr = head_ref;
// Traverse the linked list
while (ptr != null) {
// if current node is prime,
// Find sum and product
if (isPrime(ptr.data)) {
prod *= ptr.data;
sum += ptr.data;
}
ptr = ptr.next;
}
document.write("Sum = " + sum);
document.write("<br/>Product = " + prod);
}
// Driver code
// start with the empty list
var head = null;
// create the linked list
// 15 . 16 . 7 . 6 . 17
head = push(head, 17);
head = push(head, 7);
head = push(head, 6);
head = push(head, 16);
head = push(head, 15);
sumAndProduct(head);
// This code contributed by umadevi9616
</script>
OutputSum = 24
Product = 119
complexity Analysis:
- Time Complexity: O(N), where N is the number of nodes in the linked list.
- Auxiliary Space: O(1) because it is using constant space
Approach (Recursive):
We can traverse the linked list recursively and for each node, check if it is prime or not. If it is prime, we add its value to the sum and multiply its value to the product. Then we call the same function recursively for the next node until we reach the end of the list.
- Create a recursive function that takes a pointer to the head of the linked list, a pointer to an integer variable that will hold the sum of prime nodes, and a pointer to an integer variable that will hold the product of prime nodes.
- Check if the head pointer is NULL. If it is, return from the function.
- If the data of the current node is prime, add it to the sum and multiply it to the product.
- Recursively call the function with the next node in the linked list and the updated sum and product variables.
- In the calling function, print the final values of the sum and product variables.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Node of the singly linked list
struct Node {
int data;
Node* next;
};
// Function to insert a node at the beginning
// of the singly Linked List
void push(Node** head_ref, int new_data)
{
// allocate node
Node* new_node = new Node;
// put in the data
new_node->data = new_data;
// link the old list of the new node
new_node->next = (*head_ref);
// move the head to point to the new node
(*head_ref) = new_node;
}
// Function to check if a number is prime
bool isPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
// Function to find sum and product of all
// prime nodes of the singly linked list
void sumAndProductUtil(Node* node, int& prod, int& sum)
{
if (node == NULL)
return;
// Check if the current node is prime
if (isPrime(node->data)) {
prod *= node->data;
sum += node->data;
}
// Recursively call the function for the next node
sumAndProductUtil(node->next, prod, sum);
}
// Wrapper function for the sumAndProductUtil function
void sumAndProduct(Node* head)
{
int prod = 1;
int sum = 0;
sumAndProductUtil(head, prod, sum);
cout << "Sum = " << sum << endl;
cout << "Product = " << prod;
}
// Driver program
int main()
{
// start with the empty list
Node* head = NULL;
// create the linked list
// 15 -> 16 -> 7 -> 6 -> 17
push(&head, 17);
push(&head, 7);
push(&head, 6);
push(&head, 16);
push(&head, 15);
sumAndProduct(head);
return 0;
}
Java
// Java program to implement the above approach
// Node of the singly linked list
class Node {
int data;
Node next;
Node(int data)
{
this.data = data;
this.next = null;
}
}
public class GFG {
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head, int new_data)
{
// allocate node
Node new_node = new Node(new_data);
// link the old list of the new node
new_node.next = head;
// move the head to point to the new node
head = new_node;
return head;
}
// Function to check if a number is prime
static boolean isPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
// Function to find sum and product of all
// prime nodes of the singly linked list
static void sumAndProduct(Node node)
{
int prod = 1;
int sum = 0;
// Traverse the linked list
while (node != null) {
// Check if the current node is prime
if (isPrime(node.data)) {
prod *= node.data;
sum += node.data;
}
node = node.next;
}
System.out.println("Sum = " + sum);
System.out.println("Product = " + prod);
}
// Driver program
public static void main(String[] args)
{
// Start with an empty list
Node head = null;
// Create the linked list
// 15 -> 16 -> 7 -> 6 -> 17
head = push(head, 17);
head = push(head, 7);
head = push(head, 6);
head = push(head, 16);
head = push(head, 15);
// Calculate and print sum and product of prime
// nodes
sumAndProduct(head);
}
}
// This code is contributed by Susobhan Akhuli
Python3
# Python program to implement the above approach
class Node:
def __init__(self, data):
self.data = data
self.next = None
# Function to insert a node at the beginning of the singly Linked List
def push(head_ref, new_data):
# allocate node
new_node = Node(new_data)
# link the old list off the new node
new_node.next = head_ref
# move the head to point to the new node
head_ref = new_node
return head_ref
# Function to check if a number is prime
def isPrime(n):
# Corner cases
if n <= 1:
return False
if n <= 3:
return True
# This is checked so that we can skip middle five numbers in below loop
if n % 2 == 0 or n % 3 == 0:
return False
i = 5
while i * i <= n:
if n % i == 0 or n % (i + 2) == 0:
return False
i += 6
return True
# Function to find sum and product of all prime nodes of the singly linked list
def sumAndProductUtil(node, prod, sum):
if node is None:
return sum, prod
# Check if the current node is prime
if isPrime(node.data):
prod *= node.data
sum += node.data
# Recursively call the function for the next node
return sumAndProductUtil(node.next, prod, sum)
# Wrapper function for the sumAndProductUtil function
def sumAndProduct(head):
prod = 1
sum = 0
sum, prod = sumAndProductUtil(head, prod, sum)
print("Sum =", sum)
print("Product =", prod)
# Driver program
if __name__ == '__main__':
# start with the empty list
head = None
# create the linked list
# 15 -> 16 -> 7 -> 6 -> 17
head = push(head, 17)
head = push(head, 7)
head = push(head, 6)
head = push(head, 16)
head = push(head, 15)
sumAndProduct(head)
# This code is contributed by Susobhan Akhuli
C#
using System;
public class Node {
public int data;
public Node next;
public Node(int data)
{
this.data = data;
this.next = null;
}
}
public class LinkedList {
public Node head;
// Function to insert a node at the beginning of the
// singly Linked List
public void Push(int new_data)
{
// Allocate a new node
Node new_node = new Node(new_data);
// Link the old list off the new node
new_node.next = head;
// Move the head to point to the new node
head = new_node;
}
}
public class Program {
// Function to check if a number is prime
public static bool IsPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so that we can skip middle five
// numbers in the below loop
if (n % 2 == 0 || n % 3 == 0)
return false;
int i = 5;
while (i * i <= n) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
i += 6;
}
return true;
}
// Function to find sum and product of all prime nodes
// of the singly linked list
public static void
SumAndProductUtil(Node node, ref int prod, ref int sum)
{
if (node == null)
return;
// Check if the current node is prime
if (IsPrime(node.data)) {
prod *= node.data;
sum += node.data;
}
// Recursively call the function for the next node
SumAndProductUtil(node.next, ref prod, ref sum);
}
// Wrapper function for the SumAndProductUtil function
public static void SumAndProduct(LinkedList list)
{
int prod = 1;
int sum = 0;
SumAndProductUtil(list.head, ref prod, ref sum);
Console.WriteLine("Sum = " + sum);
Console.WriteLine("Product = " + prod);
}
public static void Main(string[] args)
{
// Start with an empty list
LinkedList list = new LinkedList();
// Create the linked list: 15 -> 16 -> 7 -> 6 -> 17
list.Push(17);
list.Push(7);
list.Push(6);
list.Push(16);
list.Push(15);
SumAndProduct(list);
}
}
JavaScript
<script>
// JavaScript program to implement the above approach
// Node of the singly linked list
class Node {
constructor(data) {
this.data = data;
this.next = null;
}
}
// Function to insert a node at the beginning
// of the singly Linked List
function push(headRef, newData) {
// Allocate node
const newNode = new Node(newData);
// Link the old list to the new node
newNode.next = headRef;
// Move the head to point to the new node
headRef = newNode;
return headRef;
}
// Function to check if a number is prime
function isPrime(n) {
// Corner cases
if (n <= 1) return false;
if (n <= 3) return true;
// Check if n is divisible by 2 or 3
if (n % 2 === 0 || n % 3 === 0) return false;
// Check for prime numbers using 6k +/- 1 rule
for (let i = 5; i * i <= n; i = i + 6) {
if (n % i === 0 || n % (i + 2) === 0) return false;
}
return true;
}
// Function to find sum and product of all
// prime nodes of the singly linked list
function sumAndProductUtil(node, sol) {
if (node === null) return;
// Check if the current node is prime
if (isPrime(node.data)) {
sol.prod *= node.data;
sol.sum += node.data;
}
// Recursively call the function for the next node
sumAndProductUtil(node.next, sol);
}
// Wrapper function for the sumAndProductUtil function
function sumAndProduct(head) {
let sol = {
prod: 1,
sum: 0
};
sumAndProductUtil(head, sol);
document.write("Sum = ", sol.sum);
document.write("<br>");
document.write("Product = ", sol.prod);
}
// Start with an empty list
let head = null;
// Create the linked list: 15 -> 16 -> 7 -> 6 -> 17
head = push(head, 17);
head = push(head, 7);
head = push(head, 6);
head = push(head, 16);
head = push(head, 15);
sumAndProduct(head);
// This code is contributed by Susobhan Akhuli
</script>
Output:
Sum = 24
Product = 119
Time Complexity: O(n), where n is the number of nodes in the linked list.
Auxiliary Space: O(p), where p is the number of prime nodes in the linked list.
Similar Reads
Sum and Product of all Fibonacci Nodes of a Singly Linked List
Given a singly linked list containing N nodes, the task is to find the sum and product of all the nodes from the list whose data value is a Fibonacci number. Examples: Input: LL = 15 -> 16 -> 8 -> 6 -> 13 Output: Sum = 21, Product = 104 Explanation: The list contains 2 fibonacci data val
13 min read
Sum and Product of all even digit sum Nodes of a Singly Linked List
Given a singly linked list containing N nodes, the task is to find the sum and product of all the nodes from the list whose data value has an even digit sum. Examples: Input: 15 -> 16 -> 8 -> 6 -> 13 Output: Sum = 42 Product = 9360 Explanation: The sum of all digit of number in linked li
15+ min read
Product of the nodes of a Singly Linked List
Given a singly linked list, the task is to find the product of all of the nodes of the given linked list.Note: For empty/ null lists, return -1.Examples: Input : List = 7->6->8->4->1Output : 1344Explanation: Product of nodes: 7 * 6 * 8 * 4 * 1 = 1344Input : List = 1->7->3->9-
7 min read
Product of all prime nodes in a Doubly Linked List
Given a doubly linked list containing N nodes. The task is to find the product of all prime nodes. Example: Input: List = 15 <=> 16 <=> 6 <=> 7 <=> 17 Output: Product of Prime Nodes: 119 Input: List = 5 <=> 3 <=> 4 <=> 2 <=> 9 Output: Product of Prime
10 min read
Count of Prime Nodes of a Singly Linked List
Given a singly linked list containing N nodes, the task is to find the total count of prime numbers. Examples: Input: List = 15 -> 5 -> 6 -> 10 -> 17Output: 25 and 17 are the prime nodesInput: List = 29 -> 3 -> 4 -> 2 -> 9Output: 32, 3 and 29 are the prime nodesApproach: The
15 min read
Sum and Product of the nodes of a Singly Linked List which are divisible by K
Given a singly linked list. The task is to find the sum and product of all of the nodes of the given linked list which are divisible by a given number k. Examples: Input : List = 7->60->8->40->1 k = 10 Output : Product = 2400, Sum = 100Product of nodes: 60 * 40 = 2400Input : List = 15-
15 min read
Sum of the nodes of a Singly Linked List
Given a singly linked list. The task is to find the sum of nodes of the given linked list. Task is to do A + B + C + D. Examples: Input: 7->6->8->4->1 Output: 26 Sum of nodes: 7 + 6 + 8 + 4 + 1 = 26 Input: 1->7->3->9->11->5 Output: 36 Recursive Solution: Call a function by
12 min read
Product of nodes with Bell Number weights in a Singly Linked List
Given a singly linked list containing nodes with numeric values and their corresponding weights. The goal is to find the product of the nodes whose weight corresponds Bell Number. Bell numbers are a sequence of numbers that count different combinatorial arrangements, particularly the partitions of a
13 min read
Delete all Prime Nodes from a Singly Linked List
Given a singly linked list containing N nodes, the task is to delete all nodes from the list which are prime.Examples: Input : List = 15 -> 16 -> 6 -> 7 -> 17 Output : Final List = 15 -> 16 -> 6Input : List = 15 -> 3 -> 4 -> 2 -> 9 Output :Final List = 15 ->4 -> 9
12 min read
Sum of all Palindrome Numbers present in a Linked list
Given a linked list with integer node values, the task is to find the sum of all Palindrome Numbers present as Node values.Examples: Input: 13 -> 212 -> 22 -> 44 -> 4 -> 3 Output: 285 Explanation: The sum of palindrome numbers {22, 212, 44, 4, 3} is 285Input: 19 -> 22 -> 141 Out
8 min read