Subset array sum by generating all the subsets
Last Updated :
04 Feb, 2022
Given an array of size N and a sum, the task is to check whether some array elements can be added to sum to N .
Note: At least one element should be included to form the sum.(i.e. sum cant be zero)
Examples:
Input: array = -1, 2, 4, 121, N = 5
Output: YES
The array elements 2, 4, -1 can be added to sum to N
Input: array = 1, 3, 7, 121, N = 5
Output:NO
Approach: The idea is to generate all subsets using Generate all subsequences of array and correspondingly check if any subsequence has the sum equal to the given sum.
Below is the implementation of the above approach:
CPP
// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
// Find way to sum to N using array elements atmost once
void find(int arr[], int length, int s)
{
// loop for all 2^n combinations
for (int i = 1; i < (pow(2, length)); i++) {
// sum of a combination
int sum = 0;
for (int j = 0; j < length; j++)
// if the bit is 1 then add the element
if (((i >> j) & 1))
sum += arr[j];
// if the sum is equal to given sum print yes
if (sum == s) {
cout << "YES" << endl;
return;
}
}
// else print no
cout << "NO" << endl;
}
// driver code
int main()
{
int sum = 5;
int array[] = { -1, 2, 4, 121 };
int length = sizeof(array) / sizeof(int);
// find whether it is possible to sum to n
find(array, length, sum);
return 0;
}
Java
// Java implementation of the above approach
class GFG
{
// Find way to sum to N using array elements atmost once
static void find(int [] arr, int length, int s)
{
// loop for all 2^n combinations
for (int i = 1; i <= (Math.pow(2, length)); i++) {
// sum of a combination
int sum = 0;
for (int j = 0; j < length; j++)
// if the bit is 1 then add the element
if (((i >> j) & 1) % 2 == 1)
sum += arr[j];
// if the sum is equal to given sum print yes
if (sum == s) {
System.out.println("YES");
return;
}
}
// else print no
System.out.println("NO");
}
// driver code
public static void main(String[] args)
{
int sum = 5;
int []array = { -1, 2, 4, 121 };
int length = array.length;
// find whether it is possible to sum to n
find(array, length, sum);
}
}
// This code is contributed by ihritik
Python3
# Python3 implementation
from itertools import combinations
def find(lst, n):
print('YES' if [1 for r in range(1, len(lst) + 1)
for subset in combinations(lst, r)
if sum(subset) == n] else 'NO')
find([-1, 2, 4, 121], 5)
#This code is contributed by signi dimitri
C#
// C# implementation of the above approach
using System;
public class GFG
{
// Find way to sum to N using array elements atmost once
static void find(int [] arr, int length, int s)
{
// loop for all 2^n combinations
for (int i = 1; i <= (Math.Pow(2, length)); i++) {
// sum of a combination
int sum = 0;
for (int j = 0; j < length; j++)
// if the bit is 1 then add the element
if (((i >> j) & 1) % 2 == 1)
sum += arr[j];
// if the sum is equal to given sum print yes
if (sum == s) {
Console.Write("YES");
return;
}
}
// else print no
Console.Write("NO");
}
// driver code
public static void Main()
{
int sum = 5;
int []array = { -1, 2, 4, 121 };
int length = array.Length;
// find whether it is possible to sum to n
find(array, length, sum);
}
}
// This code is contributed by PrinciRaj19992
PHP
<?php
// PHP implementation of the above approach
// Find way to sum to N using array elements atmost once
function find($arr, $length, $s)
{
// loop for all 2^n combinations
for ( $i = 1; $i < (pow(2, $length)); $i++)
{
// sum of a combination
$sum = 0;
for ($j = 0; $j < $length; $j++)
// if the bit is 1 then add the element
if ((($i >> $j) & 1))
$sum += $arr[$j];
// if the sum is equal to given sum print yes
if ($sum == $s)
{
echo "YES","\n";
return;
}
}
// else print no
echo "NO","\n";
}
// Driver code
$sum = 5;
$array = array(-1, 2, 4, 121 );
$length = sizeof($array) / sizeof($array[0]);
// find whether it is possible to sum to n
find($array, $length, $sum);
// This code is contributed by ajit.
?>
JavaScript
<script>
// Javascript implementation of the above approach
// Find way to sum to N using array
// elements atmost once
function find(arr, length, s)
{
// loop for all 2^n combinations
for (var i = 1; i < (Math.pow(2, length)); i++)
{
// sum of a combination
var sum = 0;
for (var j = 0; j < length; j++)
// if the bit is 1 then add the element
if (((i >> j) & 1))
sum += arr[j];
// if the sum is equal to given sum print yes
if (sum == s) {
document.write( "YES" + "<br>");
return;
}
}
// else print no
document.write( "NO" + "<br>");
}
var sum = 5;
var array = [ -1, 2, 4, 121 ];
var length = array.length;
// find whether it is possible to sum to n
find(array, length, sum);
// This code is contributed by SoumikMondal
</script>
Note: This program would not run for the large size of the array.
Similar Reads
Sum of subsets of all the subsets of an array | O(N) Given an array arr[] of length N, the task is to find the overall sum of subsets of all the subsets of the array.Examples: Input: arr[] = {1, 1} Output: 6 All possible subsets: a) {} : 0 All the possible subsets of this subset will be {}, Sum = 0 b) {1} : 1 All the possible subsets of this subset wi
7 min read
Sum of subsets of all the subsets of an array | O(2^N) Given an array arr[] of length N, the task is to find the overall sum of subsets of all the subsets of the array.Examples: Input: arr[] = {1, 1} Output: 6 All possible subsets: a) {} : 0 All the possible subsets of this subset will be {}, Sum = 0 b) {1} : 1 All the possible subsets of this subset wi
6 min read
Sum of subsets of all the subsets of an array | O(3^N) Given an array arr[] of length N, the task is to find the overall sum of subsets of all the subsets of the array.Examples: Input: arr[] = {1, 1} Output: 6 All possible subsets: a) {} : 0 All the possible subsets of this subset will be {}, Sum = 0 b) {1} : 1 All the possible subsets of this subset wi
6 min read
Print all subsets with given sum Given an array arr[] of non-negative integers and an integer target. The task is to print all subsets of the array whose sum is equal to the given target. Note: If no subset has a sum equal to target, print -1.Examples:Input: arr[] = [5, 2, 3, 10, 6, 8], target = 10Output: [ [5, 2, 3], [2, 8], [10]
15+ min read
Print all subsets of a given Set or Array Given an array arr of size n, your task is to print all the subsets of the array in lexicographical order.A subset is any selection of elements from an array, where the order does not matter, and no element appears more than once. It can include any number of elements, from none (the empty subset) t
12 min read