Let Sn = 1 + 2 + 3 + 4 + ... + n
We can see that this is an Arithmetic Progression with the first term (a) = 1 and common difference (d) =1 and there are n term
So, Sum of n terms = n/2 (2 x a + (n - 1) x d)
Putting the values for this series we will get
Sn = n/2(2 x 1 + (n - 1) x 1)
Sn = n/2(2 + n - 1)
Sn = n(n + 1)/2
Hence Proved.
Let Sn = 3+ 4 + 5 -- + 25
Now we can also write it like this
Sn + 1 + 2 = 1 + 2 + 3 + 4 ---- + 25
Clearly now it is the sum of first 25 natural number we can be written like this
Sn + 1+ 2 = 25 (25 + 1) / 2
Sn = 325 - 1 - 2
Sn = 322
Let Sn = 12 + 22 + 32 +… + n2 ---eq 1
We know that, k3 – (k – 1)3 = 3k2 – 3k + 1 --- eq 2
We know that, (a - b)3 = a3 - b3 - 3a2b + 3ab2
So, k3 - (k - 1)3
= k3 - k3 +1 + 3k2 - 3k
= 3k2 - 3k +1
Putting k = 1, 2…, n successively in eq 2, we obtain
13 – 03 = 3(1)2 – 3(1) + 1
23 – 13 = 3(2)2 – 3(2) + 1
33 – 23 = 3(3)2 – 3(3) + 1
.......................................
.......................................
......................................
n3 – (n – 1)3= 3(n)2 – 3(n) + 1
Adding both sides of all above equations, we get
n3 – 03 = 3 (12 + 22 + 32 + ... + n2) – 3 (1 + 2 + 3 + ... + n) + n
We can write this like:
n3 = 3 ∑(k2) - 3∑(k) +n, where 1 ≤ k ≤ n --- eq(3)
We know that,
∑(k) (where 1 ≤ k ≤ n ) = 1 + 2 + 3 + 4 --- n = n(n + 1)/2 ---eq(4)
and eq 1 can also be written like this
Sn = ∑(k2), where 1 ≤ k ≤ n --- eq(1)
Now, putting these values in eq 3
n3 = 3Sn - 3(n)(n + 1)/ 2 + n
n3 + 3 (n) (n + 1)/2 - n = 3Sn
(2n3 + 3n2 + 3n - 2n)/2 = 3Sn
(2n3 + 3n2 + n)/6 = Sn
n(2n2 + 3n + 1)/6 = Sn
n(2n2 + n + 2n + 1)/6 = Sn
n(n(2n + 1) + 1(2n + 1))/6 = Sn
n(n + 1)(2n + 1)/6 = Sn
Sn = n(n + 1)(2n + 1)/6
Hence proved.
Given that ,
an = n2 + n + 1
Thus, the sum to n terms is given by
Sn = ∑ak (where 1 ≤ k ≤ n ) = ∑ k2 + ∑ k + ∑1 (where 1 ≤ k ≤ n)
= n(n + 1) (2n + 1)/6 + n (n + 1)/2 + n
= (n(n + 1) (2n + 1) + 3n(n + 1) + 6n)/6
= ((n2+ n) (2n + 1) + 3n2 + 3n + 6n)/6
= (2n3 + 2n2 + n2 + n + 3n2 + 9n)/6
= (2n3 + 6n2 + 10n)/6
If we observe the series carefully we can write it like this
Sn =(1) + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + ------
We can say that we have to find sum of the sum of first n natural number.
So we can write Sn= Σ((i(i + 1))/2), where 1 ≤ i ≤ n
= (1/2)Σ (i(i + 1))
= (1/2)Σ (i2 + i)
= (1/2)(Σ i2 + Σ i)
We know Σ i2 = n (n + 1) (2n + 1) / 6 and
Σ i = n (n + 1) / 2.
Substituting the value, we get,
Sum = (1/2)((n(n + 1)(2n + 1) / 6) + (n( n + 1) / 2))
= n(n + 1)/2 [(2n + 1)/6 + 1/2]
= n(n + 1)(n + 2) / 6
Let Sn = 13 + 23 + 33 +… + n3 ---eq 1
We know that, (k + 1)4 – (k)4 = 4k3 + 6k2 + 4k + 1 --- eq 2
We know that, (a+b)4 = (a2 +b2 +2ab)2
= a4 + b4 + 6a2b2 + 4a3b + 4ab3
So, (k + 1)4 - (k)4
= k4 + 1 + 6k2 + 4k3 + 4k- k4
= 4k3 +6k2 + 4k +1
Putting k = 1, 2…, n successively in eq 2 , we obtain
(1 + 1)4 – 14 = 4(1)3 + 6(1)2 + 4(1) + 1
(2 + 1)4 – 24 = 4(2)3 + 6(2)2 + 4(2) + 1
.......................................
.......................................
......................................
(n + 1)4 – (n)4 = 4(n)3 + 6n2 + 4n + 1
Adding both sides of all the above equations, we get
(n + 1)4 – 14 = 4 (13 + 23+ 33 + ... + n3) + 6(12 + 22+ 32 + 42 + 52) + 4 (1 + 2 + 3 + ... + n) + n
We can write this like:
(n + 1)4 - 14 = 4 ∑ (k3) + 6∑(k2) + 4∑(k) + n where 1 ≤ k ≤ n --- eq(3)
We know that ,
∑(k) (where 1 ≤ k ≤ n ) = 1 + 2 + 3 + 4 --- n = n (n + 1)/2 ---eq(4)
∑(k2) (where 1 ≤ k ≤ n ) = 12 + 22 + 32 + 42 --- n2 = n (n + 1) (2n + 1)/6 ---eq(5)
and eq 1 can also be written like this
Sn = ∑(k3) , where 1 ≤ k ≤ n --- eq(1)
Now, putting these values in eq 3
(n + 1)4 -14 = 4Sn+ 6(n) (n + 1) (2n + 1)/6 + 4 (n) (n + 1)/2 + n
n4 + 6n2 + 4n3 + 4n - (n)(2n2 + 3n + 1) - 2(n)(n + 1) - n = 4Sn
n4 + 6n2 + 4n3 + 4n - 2n3 - 3n2 - n - 2n2 - 2n - n = 4Sn
n4 + n2 + 2n3 = 4Sn
n2 (n2 + 1 + 2n) = 4Sn
n2 (n + 1)2 = 4Sn
Sn = (n(n + 1)/2)2
Hence proved.
Sum of first n natural number : n(n + 1)/2
Sum of cube of first n natural number : (n(n + 1)/2)2
So, (13 + 23 + 33 ----+ n3) / (1+ 2+ 3 ---- +n)
= ((n(n + 1)/2)2) / (n(n + 1)/2)
= n(n + 1)/2
Now as we can see that value of n is 9 in the question,
= 9 (9 + 1) / 2
= 9 x 5
= 45