Sort the Array of Strings on the basis of given substring range
Last Updated :
29 Mar, 2023
Given two positive integers I and X and an array of strings arr[], the task is to sort the given array of strings on the basis of substrings starting from index I of size X.
Examples:
Input: I = 2, X = 2, arr[] = { "baqwer", "zacaeaz", "aaqzzaa", "aacaap", "abbatyo", "bbbacztr", "bbbdaaa" }
Output: abbatyo bbbacztr bbbdaaa aacaap zacaeaz baqwer aaqzzaa
Explanation:
All sub-strings starting from index I = 2 and of size x = 2 are {"qw", "ca", "qz", "ca", "ba", "ba", "bd"}.
Sorting them in lexicographical increasing order gives {"ba", "ba", "bd", "ca", "ca", "qw", "qz" }, then print the corresponding original string in this order.
Input: I = 1, X = 3, arr[] = { "submit", "source", "skills", "epidemic", "ample", "apple" }
Output: skills ample source epidemic apple submit
Approach: The idea is to create a substring of all the strings in the given array from index I of size X and keep the count of pair of a substring with the corresponding string in a map of pairs. After inserting in the map of pairs. After inserting, traverse the map and print the string.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to sort the given array
// of strings based on substring
void sortArray(vector<string> s,
int l, int x)
{
// Map of pairs to sort vector
// of strings
map<pair<string, string>, int> mp;
for (int i = 0; i < s.size(); i++) {
// Create substring from index
// 'l' and of size 'X'
string part = s[i].substr(l, x);
// Insert in Map
mp[{ part, s[i] }] += 1;
}
// Print the sorted vector of strings
for (auto it = mp.begin();
it != mp.end(); ++it) {
// Traverse the number of time
// a string is present
for (int j = 0; j < it->second; j++) {
// Print the string
cout << it->first.second << ' ';
}
}
}
// Driver Code
int main()
{
// Given array of strings
vector<string> arr;
arr = { "baqwer", "zacaeaz", "aaqzzaa",
"aacaap", "abbatyo", "bbbacztr",
"bbbdaaa" };
// Given I and X
int I = 2, X = 2;
// Function Call
sortArray(arr, I, X);
return 0;
}
Java
import java.util.*;
public class Main {
// Function to sort the given array
// of strings based on substring
static void sortArray(String[] s, int l, int x) {
// Map of pairs to sort array of strings
Map<String, Integer> mp = new TreeMap<>();
for (int i = 0; i < s.length; i++) {
// Create substring from index 'l' and of size 'x'
String part = s[i].substring(l, l + x);
// Insert in Map
if (mp.containsKey(part + s[i])) {
mp.put(part + s[i], mp.get(part + s[i]) + 1);
} else {
mp.put(part + s[i], 1);
}
}
// Print the sorted array of strings
for (String key : mp.keySet()) {
// Traverse the number of time a string is present
for (int j = 0; j < mp.get(key); j++) {
// Print the string
System.out.print(key.substring(x) + " ");
}
}
}
// Driver Code
public static void main(String[] args) {
// Given array of strings
String[] arr = { "baqwer", "zacaeaz", "aaqzzaa",
"aacaap", "abbatyo", "bbbacztr",
"bbbdaaa" };
// Given I and X
int I = 2, X = 2;
// Function Call
sortArray(arr, I, X);
}
}
Python3
# Python program for the above approach
# Function to sort the given array
# of strings based on substring
def sortArray(s, l, x):
# Map of pairs to sort vector
# of strings
mp = {}
for i in range(len(s)):
# Create substring from index
# 'l' and of size 'X'
part = s[i][l:l+x]
# Insert in Map
if (part, s[i]) in mp:
mp[(part, s[i])] += 1
else:
mp[(part, s[i])] = 1
# Print the sorted vector of strings
for key, value in sorted(mp.items()):
# Traverse the number of time
# a string is present
for j in range(value):
# Print the string
print(key[1], end=" ")
# Driver Code
if __name__ == "__main__":
# Given array of strings
arr = ["baqwer", "zacaeaz", "aaqzzaa",
"aacaap", "abbatyo", "bbbacztr",
"bbbdaaa"]
# Given I and X
I = 2
X = 2
# Function Call
sortArray(arr, I, X)
JavaScript
// JavaScript code for the above approach
const sortArray = (s, l, x) => {
// Map of pairs to sort array of strings
let mp = new Map();
for (let i = 0; i < s.length; i++) {
// Create substring from index 'l' and of size 'x'
let part = s[i].substring(l, l + x);
// Insert in Map
if (!mp.has(part + s[i])) {
mp.set(part + s[i], 1);
} else {
mp.set(part + s[i], mp.get(part + s[i]) + 1);
}
}
// Print the sorted array of strings
let sortedArray = Array.from(mp.keys()).sort();
for (let i = 0; i < sortedArray.length; i++) {
// Traverse the number of time a string is present
for (let j = 0; j < mp.get(sortedArray[i]); j++) {
// Print the string
console.log(sortedArray[i].substring(x));
}
}
};
// Given array of strings
let arr = [ "baqwer", "zacaeaz", "aaqzzaa", "aacaap", "abbatyo", "bbbacztr", "bbbdaaa",];
// Given I and X
let I = 2,
X = 2;
// Function Call
sortArray(arr, I, X);
C#
// C# code for the approach
using System;
using System.Collections.Generic;
using System.Linq;
class GFG {
// Function to sort the given array
// of strings based on substring
static void SortArray(List<string> s, int l, int x)
{
// Map of pairs to sort vector
// of strings
Dictionary<Tuple<string, string>, int> mp = new Dictionary<Tuple<string, string>, int>();
for (int i = 0; i < s.Count; i++)
{
// Create substring from index 'l' and of size 'x'
string part = s[i].Substring(l, x);
// Insert in Map
var key = new Tuple<string, string>(part, s[i]);
if (mp.ContainsKey(key))
{
mp[key]++;
}
else
{
mp[key] = 1;
}
}
// Print the sorted vector of strings
foreach (var item in mp.OrderBy(kvp => kvp.Key))
{
// Traverse the number of times a string is present
for (int j = 0; j < item.Value; j++)
{
// Print the string
Console.Write(item.Key.Item2 + " ");
}
}
}
// Driver Code
static void Main(string[] args)
{
// Given array of strings
List<string> arr = new List<string> {
"baqwer",
"zacaeaz",
"aaqzzaa",
"aacaap",
"abbatyo",
"bbbacztr",
"bbbdaaa"
};
// Given I and X
int I = 2, X = 2;
// Function Call
SortArray(arr, I, X);
}
}
Output: abbatyo bbbacztr bbbdaaa aacaap zacaeaz baqwer aaqzzaa
Time Complexity: O(N*log N)
Auxiliary Space: O(N)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read