Sort an Array of Strings in Lexicographical order
Last Updated :
19 Apr, 2025
Given an array of strings arr[] of size n, the task is to sort all the strings in lexicographical order.
Examples:
Input: arr[] = ["banana", "apple", "cherry"]
Output: ["apple", "banana", "cherry"]
Explanation: All strings are sorted alphabetically. "apple" comes before "banana", and "banana" before "cherry".
Input: arr[] = ["dog", "cat", "bat"]
Output: ["bat", "cat", "dog"]
Explanation: "bat" is the smallest, followed by "cat", and then "dog" in lexicographical order.
Input: arr[] = ["geeks", "for", "geeksforgeeks"]
Output: ["for", "geeks", "geeksforgeeks"]
Using Inbuilt Sort - O(n*m*log(n)) Time and O(1) Space [m : Average Length]
The idea is to use inbuilt sort function that are optimized and handle string comparisons character by character. This eliminates the need for writing custom comparison logic. Strings are sorted based on their ASCII values, where uppercase letters come before lowercase.
C++
// C++ program to sort strings in lexicographical
// order Using Inbuilt Sort
#include <bits/stdc++.h>
using namespace std;
// Function to sort strings lexicographically
vector<string> sortStrings(vector<string>& arr) {
// Use inbuilt sort to arrange strings
sort(arr.begin(), arr.end());
return arr;
}
// Function to print the result in required format
void printArray(vector<string>& arr) {
cout << "[";
for (int i = 0; i < arr.size(); i++) {
cout << arr[i];
if (i < arr.size() - 1) {
cout << ", ";
}
}
cout << "]";
}
// Driver code
int main() {
vector<string> arr = {"geeksforgeeks", "geeks", "for"};
vector<string> res = sortStrings(arr);
printArray(res);
return 0;
}
Java
// Java program to sort strings in lexicographical
// order Using Inbuilt Sort
import java.util.*;
class GfG {
// Function to sort strings lexicographically
static String[] sortStrings(String[] arr) {
// Use inbuilt sort to arrange strings
Arrays.sort(arr);
return arr;
}
// Function to print the result in required format
static void printArray(String[] arr) {
System.out.print("[");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i]);
if (i < arr.length - 1) {
System.out.print(", ");
}
}
System.out.print("]");
}
// Driver code
public static void main(String[] args) {
String[] arr = {"geeksforgeeks", "geeks", "for"};
String[] res = sortStrings(arr);
printArray(res);
}
}
Python
# Python program to sort strings in lexicographical
# order Using Inbuilt Sort
# Function to sort strings lexicographically
def sortStrings(arr):
# Use inbuilt sort to arrange strings
arr.sort()
return arr
# Function to print the result in required format
def printArray(arr):
print("[", end="")
for i in range(len(arr)):
print(arr[i], end="")
if i < len(arr) - 1:
print(", ", end="")
print("]")
# Driver code
if __name__ == '__main__':
arr = ["geeksforgeeks", "geeks", "for"]
res = sortStrings(arr)
printArray(res)
C#
// C# program to sort strings in lexicographical
// order Using Inbuilt Sort
using System;
class GfG {
// Function to sort strings lexicographically
public static string[] sortStrings(string[] arr) {
// Use inbuilt sort to arrange strings
Array.Sort(arr);
return arr;
}
// Function to print the result in required format
public static void printArray(string[] arr) {
Console.Write("[");
for (int i = 0; i < arr.Length; i++) {
Console.Write(arr[i]);
if (i < arr.Length - 1) {
Console.Write(", ");
}
}
Console.Write("]");
}
// Driver code
public static void Main() {
string[] arr = {"geeksforgeeks", "geeks", "for"};
string[] res = sortStrings(arr);
printArray(res);
}
}
JavaScript
// JavaScript program to sort strings in lexicographical
// order Using Inbuilt Sort
// Function to sort strings lexicographically
function sortStrings(arr) {
// Use inbuilt sort to arrange strings
arr.sort();
return arr;
}
// Function to print the result in required format
function printArray(arr) {
let output = "[";
for (let i = 0; i < arr.length; i++) {
output += arr[i];
if (i < arr.length - 1) {
output += ", ";
}
}
output += "]";
console.log(output);
}
// Driver code
let arr = ["geeksforgeeks", "geeks", "for"];
let res = sortStrings(arr);
printArray(res);
Output[for, geeks, geeksforgeeks]
Time Complexity: O(n*m*log(n)), where n is number of strings, m is average length.
Space Complexity: O(1), in-place sort uses constant extra space.
Using Merge Sort - O(n*m*log(n)) Time and O(n) Space
The idea is to sort a list of strings in lexicographical order using the Merge Sort technique. The thought process is based on divide-and-conquer, where the array is recursively divided until single elements remain.
C++
// C++ program to sort strings in lexicographical
// order using Merge Sort
#include <bits/stdc++.h>
using namespace std;
// Merge two sorted halves
void merge(vector<string>& arr, int left,
int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
vector<string> leftArr(n1);
vector<string> rightArr(n2);
// Copy data to temporary arrays
for (int i = 0; i < n1; i++) {
leftArr[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
rightArr[j] = arr[mid + 1 + j];
}
int i = 0, j = 0, k = left;
// Merge the two arrays back into arr
while (i < n1 && j < n2) {
if (leftArr[i] <= rightArr[j]) {
arr[k++] = leftArr[i++];
} else {
arr[k++] = rightArr[j++];
}
}
// Copy remaining elements
while (i < n1) {
arr[k++] = leftArr[i++];
}
while (j < n2) {
arr[k++] = rightArr[j++];
}
}
// Recursive merge sort function
void mergeSort(vector<string>& arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge sorted halves
merge(arr, left, mid, right);
}
}
// Function to sort strings lexicographically
vector<string> sortStrings(vector<string>& arr) {
mergeSort(arr, 0, arr.size() - 1);
return arr;
}
// Function to print the result in required format
void printArray(vector<string>& arr) {
cout << "[";
for (int i = 0; i < arr.size(); i++) {
cout << arr[i];
if (i < arr.size() - 1) {
cout << ", ";
}
}
cout << "]";
}
// Driver code
int main() {
vector<string> arr = {"geeksforgeeks", "geeks", "for"};
vector<string> res = sortStrings(arr);
printArray(res);
return 0;
}
Java
// Java program to sort strings in lexicographical
// order using Merge Sort
import java.util.*;
class GfG {
// Merge two sorted halves
static void merge(String[] arr, int left,
int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
String[] leftArr = new String[n1];
String[] rightArr = new String[n2];
// Copy data to temporary arrays
for (int i = 0; i < n1; i++) {
leftArr[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
rightArr[j] = arr[mid + 1 + j];
}
int i = 0, j = 0, k = left;
// Merge the two arrays back into arr
while (i < n1 && j < n2) {
if (leftArr[i].compareTo(rightArr[j]) <= 0) {
arr[k++] = leftArr[i++];
} else {
arr[k++] = rightArr[j++];
}
}
// Copy remaining elements
while (i < n1) {
arr[k++] = leftArr[i++];
}
while (j < n2) {
arr[k++] = rightArr[j++];
}
}
// Recursive merge sort function
static void mergeSort(String[] arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge sorted halves
merge(arr, left, mid, right);
}
}
// Function to sort strings lexicographically
static String[] sortStrings(String[] arr) {
mergeSort(arr, 0, arr.length - 1);
return arr;
}
// Function to print the result in required format
static void printArray(String[] arr) {
System.out.print("[");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i]);
if (i < arr.length - 1) {
System.out.print(", ");
}
}
System.out.print("]");
}
public static void main(String[] args) {
String[] arr = {"geeksforgeeks", "geeks", "for"};
String[] res = sortStrings(arr);
printArray(res);
}
}
Python
# Python program to sort strings in lexicographical
# order using Merge Sort
# Merge two sorted halves
def merge(arr, left, mid, right):
n1 = mid - left + 1
n2 = right - mid
leftArr = arr[left:left + n1]
rightArr = arr[mid + 1:mid + 1 + n2]
i = j = 0
k = left
# Merge the two arrays back into arr
while i < n1 and j < n2:
if leftArr[i] <= rightArr[j]:
arr[k] = leftArr[i]
i += 1
else:
arr[k] = rightArr[j]
j += 1
k += 1
# Copy remaining elements
while i < n1:
arr[k] = leftArr[i]
i += 1
k += 1
while j < n2:
arr[k] = rightArr[j]
j += 1
k += 1
# Recursive merge sort function
def mergeSort(arr, left, right):
if left < right:
mid = left + (right - left) // 2
# Sort first and second halves
mergeSort(arr, left, mid)
mergeSort(arr, mid + 1, right)
# Merge sorted halves
merge(arr, left, mid, right)
# Function to sort strings lexicographically
def sortStrings(arr):
mergeSort(arr, 0, len(arr) - 1)
return arr
# Function to print the result in required format
def printArray(arr):
print("[", end="")
for i in range(len(arr)):
print(arr[i], end="")
if i < len(arr) - 1:
print(", ", end="")
print("]")
# Driver code
if __name__ == '__main__':
arr = ["geeksforgeeks", "geeks", "for"]
res = sortStrings(arr)
printArray(res)
C#
// C# program to sort strings in lexicographical
// order using Merge Sort
using System;
class GfG {
// Merge two sorted halves
static void merge(string[] arr, int left,
int mid, int right) {
int n1 = mid - left + 1;
int n2 = right - mid;
string[] leftArr = new string[n1];
string[] rightArr = new string[n2];
// Copy data to temporary arrays
for (int i = 0; i < n1; i++) {
leftArr[i] = arr[left + i];
}
for (int j = 0; j < n2; j++) {
rightArr[j] = arr[mid + 1 + j];
}
int k = left, x = 0, y = 0;
// Merge the two arrays back into arr
while (x < n1 && y < n2) {
if (String.Compare(leftArr[x], rightArr[y]) <= 0) {
arr[k++] = leftArr[x++];
} else {
arr[k++] = rightArr[y++];
}
}
// Copy remaining elements
while (x < n1) {
arr[k++] = leftArr[x++];
}
while (y < n2) {
arr[k++] = rightArr[y++];
}
}
// Recursive merge sort function
static void mergeSort(string[] arr, int left, int right) {
if (left < right) {
int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge sorted halves
merge(arr, left, mid, right);
}
}
// Function to sort strings lexicographically
static string[] sortStrings(string[] arr) {
mergeSort(arr, 0, arr.Length - 1);
return arr;
}
// Function to print the result in required format
static void printArray(string[] arr) {
Console.Write("[");
for (int i = 0; i < arr.Length; i++) {
Console.Write(arr[i]);
if (i < arr.Length - 1) {
Console.Write(", ");
}
}
Console.Write("]");
}
static void Main() {
string[] arr = {"geeksforgeeks", "geeks", "for"};
string[] res = sortStrings(arr);
printArray(res);
}
}
JavaScript
// JavaScript program to sort strings in lexicographical
// order using Merge Sort
// Merge two sorted halves
function merge(arr, left, mid, right) {
let n1 = mid - left + 1;
let n2 = right - mid;
let leftArr = arr.slice(left, left + n1);
let rightArr = arr.slice(mid + 1, mid + 1 + n2);
let i = 0, j = 0, k = left;
// Merge the two arrays back into arr
while (i < n1 && j < n2) {
if (leftArr[i] <= rightArr[j]) {
arr[k++] = leftArr[i++];
} else {
arr[k++] = rightArr[j++];
}
}
// Copy remaining elements
while (i < n1) {
arr[k++] = leftArr[i++];
}
while (j < n2) {
arr[k++] = rightArr[j++];
}
}
// Recursive merge sort function
function mergeSort(arr, left, right) {
if (left < right) {
let mid = Math.floor(left + (right - left) / 2);
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge sorted halves
merge(arr, left, mid, right);
}
}
// Function to sort strings lexicographically
function sortStrings(arr) {
mergeSort(arr, 0, arr.length - 1);
return arr;
}
// Function to print the result in required format
function printArray(arr) {
let output = "[";
for (let i = 0; i < arr.length; i++) {
output += arr[i];
if (i < arr.length - 1) {
output += ", ";
}
}
output += "]";
console.log(output);
}
// Driver code
let arr = ["geeksforgeeks", "geeks", "for"];
let res = sortStrings(arr);
printArray(res);
Output[for, geeks, geeksforgeeks]
Time Complexity: O(n*m*log(n)), where n is number of strings, m is average length.
Space Complexity: O(n), extra space used during merge process.
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms
DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort
QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials
Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Breadth First Search or BFS for a Graph
Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Bubble Sort Algorithm
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Insertion Sort Algorithm
Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Binary Search Algorithm - Iterative and Recursive Implementation
Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Data Structures Tutorial
Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all
Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort
Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read