Open In App

Select all columns, except one given column in a Pandas DataFrame

Last Updated : 13 Oct, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

DataFrame Data structure are the heart of Pandas library. DataFrames are basically two dimension Series object. They have rows and columns with rows representing the index and columns representing the content. Now, let's see how to Select all columns, except one given column in Pandas DataFrame in Python.

Creating a DataFrame:

Python3
# import pandas library
import pandas as pd

# create a Dataframe
data = pd.DataFrame({
    'course_name': ['Data Structures', 'Python',
                    'Machine Learning'],
    'student_name': ['A', 'B', 
                     'C'],
    'student_city': ['Chennai', 'Pune', 
                     'Delhi'],
    'student_gender': ['M', 'F',
                       'M'] })
# show the Dataframe
data

Output:

DataFrame
DataFrame

Using loc[] to select all columns, except one given column

This GeeksForGeeks Dataframe is just a two dimension array with numerical index. Therefore, to except only one column we could use the columns methods to get all columns and use a not operator to exclude the columns which are not needed. This method works only when the Dataframe is not multi indexed (did not have more than one index). 

Example 1: Using Dataframe.loc[ ] with '!='

Python3
df = data.loc[ : , data.columns != 'student_gender']

# show the dataframe
df 

Output:

filtered student_gender column

Example 2: Using Dataframe.loc[ ] with isin

Python3
df= data.loc[:, ~data.columns.isin(['student_gender'])]

# showing the dataframe
df

Output:

filtered student_gender column
filtered student_gender column

Using drop() Method to select all columns, except one given column

Dataframe supports drop() method to drop a particular column. It accepts two arguments, column/row name and axis

Example: Select all columns, except one 'student_city' column in  Pandas Dataframe.

Python3
# drop method
df = data.drop('student_city',
               axis = 1)
 
# show the dataframe
df 

Output:

student_city column removed
student_city column removed

Using Series.difference() to select all columns, except one given column

Using Series.difference() method and [ ] operator together. Series.difference() Method returns a new Index with elements from the index that are not in other.

Example: Select all columns, except one 'student_name' column in Pandas Dataframe.

Python3
                       
df = data[data.columns.difference(['student_name'])]

# show the dataframe
df 

Output:

filtered student_name column
filtered student_name column

Next Article

Similar Reads