Open In App

scipy stats.exponweib() | Python

Last Updated : 20 Mar, 2019
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report
scipy.stats.exponweib() is an exponential Weibull continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; 'm' = mean, 'v' = variance, 's' = Fisher's skew and 'k' = Fisher's kurtosis. (default = 'mv'). Results : exponential Weibull continuous random variable
Code #1 : Creating exponential Weibull continuous random variable Python3
from scipy.stats import exponweib  

numargs = exponweib .numargs
[a, b] = [0.6, ] * numargs
rv = exponweib (a, b)

print ("RV : \n", rv) 
Output :
RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D5660E1D0>
Code #2 : exponential Weibull random variates and probability distribution. Python3
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
 
# Random Variates
R = exponweib .rvs(a, b, scale = 2,  size = 10)
print ("Random Variates : \n", R)

# PDF
R = exponweib .pdf(a, b, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)
Output :
Random Variates : 
 [8.17460511e+00 1.33286202e+00 1.77493153e+01 1.83861272e-01
 5.32255458e-01 1.34520149e+00 1.91022498e-02 3.08216056e-03
 6.46223522e-03 1.75786657e-01]

Probability Distribution : 
 [0.00442484 0.04919014 0.09470438 0.14070318 0.1869346  0.2331608
 0.27915913 0.32472306 0.36966267 0.41380492]
 
Code #3 : Graphical Representation. Python3
import numpy as np
import matplotlib.pyplot as plt

distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)

plot = plt.plot(distribution, rv.pdf(distribution))
Output :
Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]
Code #4 : Varying Positional Arguments Python3
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 5, 100)

# Varying positional arguments
y1 = exponweib .pdf(x, 2, 6)
y2 = exponweib .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")
Output :

Next Article
Practice Tags :

Similar Reads