Open In App

scipy stats.betaprime() | Python

Last Updated : 20 Mar, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
scipy.stats.betaprime() is an beta prime continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters : q : lower and upper tail probability a, b : shape parameters x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; 'm' = mean, 'v' = variance, 's' = Fisher's skew and 'k' = Fisher's kurtosis. (default = 'mv'). Results : beta prime continuous random variable
Code #1 : Creating betaprime continuous random variable Python3
# importing scipy
from scipy.stats import betaprime

numargs = betaprimeprime.numargs
[a, b] = [0.6, ] * numargs
rv = betaprimeprime(a, b)

print ("RV : \n", rv)
Output :
RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029482FCC438>
Code #2 : betaprime random variates and probability distribution. Python3 1==
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
 
# Random Variates
R = betaprime.rvs(a, b, scale = 2,  size = 10)
print ("Random Variates : \n", R)

# PDF
R = betaprime.pdf(quantile, a, b, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R) 
Output :
Random Variates : 
 [ 1.59603917  1.92408727  1.2120992   0.34064091  2.68681773 22.99956678
  1.45523032  2.93360219 23.93717261 18.04203815]

Probability Distribution : 
 [2.58128122 0.8832351  0.61488062 0.47835546 0.39160163 0.33053737
 0.28490363 0.24941484 0.22101038 0.1977718 ]
 
Code #3 : Graphical Representation. Python3
import numpy as np
import matplotlib.pyplot as plt

distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)

plot = plt.plot(distribution, rv.pdf(distribution))
Output :
Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]
Code #4 : Varying Positional Arguments Python3 1==
from scipy.stats import arcsine
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 1.0, 100)

# Varying positional arguments
y1 = betaprime.pdf(x, 2.75, 2.75)
y2 = betaprime.pdf(x, 3.25, 3.25)
plt.plot(x, y1, "*", x, y2, "r--")
Output :

Next Article
Practice Tags :

Similar Reads