Open In App

Reverse a doubly linked list in groups of K size

Last Updated : 07 Sep, 2024
Comments
Improve
Suggest changes
Like Article
Like
Report

Given a Doubly linked list containing n nodes. The task is to reverse every group of k nodes in the list. If the number of nodes is not a multiple of k then left-out nodes, in the end should be considered as a group and must be reversed.

Examples: 

Input: 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> NULL, k = 2
Output: 2 <-> 1 <-> 4 <-> 3 <-> 6 <-> 5 <-> NULL.
Explanation : Linked List is reversed in a group of size k = 2.

Reverse-a-doubly-linked-list-in-groups-of-K-size-2


Input: 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> NULL, k = 4
Output: 4 <-> 3 <-> 2 <-> 1 <-> 6 -> 5 -> NULL.
Explanation : Linked List is reversed in a group of size k = 4.

Reverse-a-doubly-linked-list-in-groups-of-K-size-4

[Expected Approach – 1] Using Recursion – O(n) Time and O(n) Space:

The idea is to reverse the first k nodes of the list and update the head of the list to the new head of this reversed segment. Then, connect the tail of this reversed segment to the result of recursively reversing the remaining portion of the list.

Follow the steps below to solve the problem:

  • If the list is empty, return the head.
  • Reverse the first k nodes using the reverseKNodes() function and update the new Head with the reversed list head.
  • Connect the tail of the reversed group to the result of recursively reversing the remaining list using the reverseKGroup() function.
  • Update next and prev pointers during the reversal.
  • At last, return the new Head of the reversed list from the first group.
C++
// C++ code to reverse a doubly linked 
// list in groups of K size

#include <iostream>
using namespace std;

class Node {
public:
    int data;
    Node *next;
    Node *prev;

    Node(int x) {
        data = x;
        next = nullptr;
        prev = nullptr;
    }
};

// Helper function to reverse K nodes
Node *reverseKNodes(Node *head, int k) {
    Node *curr = head, *prev = nullptr, *next = nullptr;
    int count = 0;

    while (curr != nullptr && count < k) {
        next = curr->next;
        curr->next = prev;
        curr->prev = nullptr;
        if (prev != nullptr) {
            prev->prev = curr;
        }
        prev = curr;
        curr = next;
        count++;
    }

    return prev;
}

// Recursive function to reverse in groups of K
Node *reverseKGroup(Node *head, int k) {
    if (head == nullptr) {
        return head;
    }
    Node *groupHead = nullptr;
    Node *newHead = nullptr;

    // Move temp to the next group
    Node *temp = head;
    int count = 0;
    while (temp && count < k) {
        temp = temp->next;
        count++;
    }

    // Reverse the first K nodes
    groupHead = reverseKNodes(head, k);

    // Connect the reversed group with the next part
    if (newHead == nullptr) {
        newHead = groupHead;
    }

    // Recursion for the next group
    head->next = reverseKGroup(temp, k);
    if (head->next != nullptr) {
        head->next->prev = head;
    }

    return newHead;
}

void printList(Node *head) {
    Node *curr = head;
    while (curr != nullptr) {
        cout << curr->data << " ";
        curr = curr->next;
    }
    cout << endl;
}

int main() {
  
    // Creating a sample doubly linked list:
    // 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
    Node *head = new Node(1);
    head->next = new Node(2);
    head->next->prev = head;
    head->next->next = new Node(3);
    head->next->next->prev = head->next;
    head->next->next->next = new Node(4);
    head->next->next->next->prev = head->next->next;
    head->next->next->next->next = new Node(5);
    head->next->next->next->next->prev = head->next->next->next;
    head->next->next->next->next->next = new Node(6);
    head->next->next->next->next->next->prev = head->next->next->next->next;

    head = reverseKGroup(head, 2);
    printList(head);

    return 0;
}
C
// C code to reverse a doubly linked 
// list in groups of K size

#include <stdio.h>
#include <stdlib.h>

struct Node {
    int data;
    struct Node* next;
    struct Node* prev;
};


// Helper function to reverse K nodes
struct Node* reverseKNodes(struct Node* head, int k) {
    struct Node* curr = head;
    struct Node* prev = NULL;
    struct Node* next = NULL;
    int count = 0;

    while (curr != NULL && count < k) {
        next = curr->next;
        curr->next = prev;
        curr->prev = NULL;
        if (prev != NULL) {
            prev->prev = curr;
        }
        prev = curr;
        curr = next;
        count++;
    }

    return prev;
}

// Recursive function to reverse in groups of K
struct Node* reverseKGroup(struct Node* head, int k) {
    if (head == NULL) {
        return head;
    }
    
    struct Node* groupHead = NULL;
    struct Node* newHead = NULL;

    // Move temp to the next group
    struct Node* temp = head;
    int count = 0;
    while (temp && count < k) {
        temp = temp->next;
        count++;
    }

    // Reverse the first K nodes
    groupHead = reverseKNodes(head, k);

    // Connect the reversed group with the next part
    if (newHead == NULL) {
        newHead = groupHead;
    }

    // Recursion for the next group
    head->next = reverseKGroup(temp, k);
    if (head->next != NULL) {
        head->next->prev = head;
    }

    return newHead;
}

void printList(struct Node* head) {
    struct Node* curr = head;
    while (curr != NULL) {
        printf("%d ", curr->data);
        curr = curr->next;
    }
    printf("\n");
}

struct Node* createNode(int data) {
    struct Node* newNode = 
      (struct Node*)malloc(sizeof(struct Node));
    newNode->data = data;
    newNode->next = NULL;
    newNode->prev = NULL;
    return newNode;
}

int main() {
  
    // Creating a sample doubly linked list:
    // 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
    struct Node* head = createNode(1);
    head->next = createNode(2);
    head->next->prev = head;
    head->next->next = createNode(3);
    head->next->next->prev = head->next;
    head->next->next->next = createNode(4);
    head->next->next->next->prev = head->next->next;
    head->next->next->next->next = createNode(5);
    head->next->next->next->next->prev = head->next->next->next;
    head->next->next->next->next->next = createNode(6);
    head->next->next->next->next->next->prev = head->next->next->next->next;

    head = reverseKGroup(head, 2);
    printList(head);

    return 0;
}
Java
// Java code to reverse a doubly linked 
// list in groups of K size

class Node {
    int data;
    Node next;
    Node prev;

    Node(int x) {
        data = x;
        next = null;
        prev = null;
    }
}

// Helper function to reverse K nodes
class GfG {
    static Node reverseKNodes(Node head, int k) {
        Node curr = head, prev = null, next = null;
        int count = 0;

        while (curr != null && count < k) {
            next = curr.next;
            curr.next = prev;
            curr.prev = null;
            if (prev != null) {
                prev.prev = curr;
            }
            prev = curr;
            curr = next;
            count++;
        }

        return prev;
    }

    // Recursive function to reverse in groups of K
    static Node reverseKGroup(Node head, int k) {
        if (head == null) {
            return head;
        }

        Node groupHead = null;
        Node newHead = null;

        // Move temp to the next group
        Node temp = head;
        int count = 0;
        while (temp != null && count < k) {
            temp = temp.next;
            count++;
        }

        // Reverse the first K nodes
        groupHead = reverseKNodes(head, k);

        // Connect the reversed group with the next part
        if (newHead == null) {
            newHead = groupHead;
        }

        // Recursion for the next group
        head.next = reverseKGroup(temp, k);
        if (head.next != null) {
            head.next.prev = head;
        }

        return newHead;
    }

    // Function to print the doubly linked list
    static void printList(Node head) {
        Node curr = head;
        while (curr != null) {
            System.out.print(curr.data + " ");
            curr = curr.next;
        }
        System.out.println();
    }

    public static void main(String[] args) {
      
        // Creating a sample doubly linked list:
        // 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
        Node head = new Node(1);
        head.next = new Node(2);
        head.next.prev = head;
        head.next.next = new Node(3);
        head.next.next.prev = head.next;
        head.next.next.next = new Node(4);
        head.next.next.next.prev = head.next.next;
        head.next.next.next.next = new Node(5);
        head.next.next.next.next.prev = head.next.next.next;
        head.next.next.next.next.next = new Node(6);
        head.next.next.next.next.next.prev = head.next.next.next.next;

        head = reverseKGroup(head, 2);
        printList(head);
    }
}
Python
# Python code to reverse a doubly linked
# list in groups of K size

class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
        self.prev = None

# Helper function to reverse K nodes
def reverseKNodes(head, k):
    curr = head
    prev = None
    next = None
    count = 0

    while curr is not None and count < k:
        next = curr.next
        curr.next = prev
        curr.prev = None
        if prev is not None:
            prev.prev = curr
        prev = curr
        curr = next
        count += 1

    return prev

# Recursive function to reverse in groups of K
def reverseKGroup(head, k):
    if head is None:
        return head

    groupHead = None
    newHead = None

    # Move temp to the next group
    temp = head
    count = 0
    while temp and count < k:
        temp = temp.next
        count += 1

    # Reverse the first K nodes
    groupHead = reverseKNodes(head, k)

    # Connect the reversed group with the next part
    if newHead is None:
        newHead = groupHead

    # Recursion for the next group
    head.next = reverseKGroup(temp, k)
    if head.next is not None:
        head.next.prev = head

    return newHead

def printList(head):
    curr = head
    while curr is not None:
        print(curr.data, end=" ")
        curr = curr.next
    print()

if __name__ == "__main__":
  
    # Creating a sample doubly linked list:
    # 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
    head = Node(1)
    head.next = Node(2)
    head.next.prev = head
    head.next.next = Node(3)
    head.next.next.prev = head.next
    head.next.next.next = Node(4)
    head.next.next.next.prev = head.next.next
    head.next.next.next.next = Node(5)
    head.next.next.next.next.prev = head.next.next.next
    head.next.next.next.next.next = Node(6)
    head.next.next.next.next.next.prev = head.next.next.next.next

    head = reverseKGroup(head, 2)
    printList(head)
C#
// C# code to reverse a doubly linked
// list in groups of K size

using System;

class Node {
    public int data;
    public Node next;
    public Node prev;

    public Node(int x) {
        data = x;
        next = null;
        prev = null;
    }
}

// Helper function to reverse K nodes
class GfG {
    static Node reverseKNodes(Node head, int k) {
        Node curr = head, prev = null, next = null;
        int count = 0;

        while (curr != null && count < k) {
            next = curr.next;
            curr.next = prev;
            curr.prev = null;
            if (prev != null) {
                prev.prev = curr;
            }
            prev = curr;
            curr = next;
            count++;
        }

        return prev;
    }

    // Recursive function to reverse in groups of K
    static Node reverseKGroup(Node head, int k) {
        if (head == null) {
            return head;
        }

        Node groupHead = null;
        Node newHead = null;

        // Move temp to the next group
        Node temp = head;
        int count = 0;
        while (temp != null && count < k) {
            temp = temp.next;
            count++;
        }

        // Reverse the first K nodes
        groupHead = reverseKNodes(head, k);

        // Connect the reversed group with the next part
        if (newHead == null) {
            newHead = groupHead;
        }

        // Recursion for the next group
        head.next = reverseKGroup(temp, k);
        if (head.next != null) {
            head.next.prev = head;
        }

        return newHead;
    }

    static void printList(Node head) {
        Node curr = head;
        while (curr != null) {
            Console.Write(curr.data + " ");
            curr = curr.next;
        }
        Console.WriteLine();
    }

    static void Main() {
      
        // Creating a sample doubly linked list:
        // 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
        Node head = new Node(1);
        head.next = new Node(2);
        head.next.prev = head;
        head.next.next = new Node(3);
        head.next.next.prev = head.next;
        head.next.next.next = new Node(4);
        head.next.next.next.prev = head.next.next;
        head.next.next.next.next = new Node(5);
        head.next.next.next.next.prev = head.next.next.next;
        head.next.next.next.next.next = new Node(6);
        head.next.next.next.next.next.prev = head.next.next.next.next;

        head = reverseKGroup(head, 2);
        printList(head);
    }
}
JavaScript
// JavaScript code to reverse a doubly linked
// list in groups of K size

class Node {
    constructor(data) {
        this.data = data;
        this.next = null;
        this.prev = null;
    }
}

// Helper function to reverse K nodes
function reverseKNodes(head, k) {
    let curr = head, prev = null, next = null;
    let count = 0;

    while (curr !== null && count < k) {
        next = curr.next;
        curr.next = prev;
        curr.prev = null;
        if (prev !== null) {
            prev.prev = curr;
        }
        prev = curr;
        curr = next;
        count++;
    }

    return prev;
}

// Recursive function to reverse in groups of K
function reverseKGroup(head, k) {
    if (head === null) {
        return head;
    }

    let groupHead = null;
    let newHead = null;

    // Move temp to the next group
    let temp = head;
    let count = 0;
    while (temp && count < k) {
        temp = temp.next;
        count++;
    }

    // Reverse the first K nodes
    groupHead = reverseKNodes(head, k);

    // Connect the reversed group with the next part
    if (newHead === null) {
        newHead = groupHead;
    }

    // Recursion for the next group
    head.next = reverseKGroup(temp, k);
    if (head.next !== null) {
        head.next.prev = head;
    }

    return newHead;
}

function printList(head) {
    let curr = head;
    while (curr !== null) {
        console.log(curr.data + " ");
        curr = curr.next;
    }
    console.log();
}

// Creating a sample doubly linked list:
// 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
let head = new Node(1);
head.next = new Node(2);
head.next.prev = head;
head.next.next = new Node(3);
head.next.next.prev = head.next;
head.next.next.next = new Node(4);
head.next.next.next.prev = head.next.next;
head.next.next.next.next = new Node(5);
head.next.next.next.next.prev = head.next.next.next;
head.next.next.next.next.next = new Node(6);
head.next.next.next.next.next.prev = head.next.next.next.next;

head = reverseKGroup(head, 2);
printList(head);

Output
2 1 4 3 6 5 

Time complexity: O(n), where n is the number of nodes in linked list.
Auxiliary Space: O(n)

[Expected Approach – 2] Using Iterative Method – O(n) Time and O(1) Space:

The idea is to traverse the list in groups of k nodes, reversing each group. After reversing a group, link it to the previous group by updating the tail pointer. Continue until the entire list is traversed and return the new head.

Follow the steps below to solve the problem:

  • Initialize pointers curr to traverse the list, newHead to track the new head of the list, tail to connect the previous group to the current group.
  • For each group of k nodes:
    • Set groupHead to the current node.
    • Then, reverse the group of k nodes by updating next and prev pointers.
    • Also, keep track of the prev node (which will be the new head of the reversed group) and the next node (which is the start of the next group).
  • Connect the end of the previous group to the start of the current reversed group.
  • Repeat the process for the remaining nodes in the list until all nodes are traversed.

Below is the implementation of the above approach: 

C++
// C++ code to reverse a doubly linked 
// list in groups of K size

#include <iostream>
using namespace std;

class Node {
  public:
    int data;
    Node *next;
    Node *prev;

    Node(int x) {
        data = x;
        next = nullptr;
        prev = nullptr;
    }
};

// Helper function to reverse K nodes iteratively
Node *reverseKGroup(Node *head, int k) {
    if (head == nullptr) {
        return head;
    }

    Node *curr = head;
    Node *newHead = nullptr;
    Node *tail = nullptr;

    while (curr != nullptr) {
        Node *groupHead = curr;
        Node *prev = nullptr;
        Node *next = nullptr;
        int count = 0;

        // Reverse the nodes in the current group
        while (curr != nullptr && count < k) {
            next = curr->next;
            curr->next = prev;
            curr->prev = nullptr;
            if (prev != nullptr) {
                prev->prev = curr;
            }
            prev = curr;
            curr = next;
            count++;
        }

        // If newHead is null, set it to the
      	// last node of the first group
        if (newHead == nullptr) {
            newHead = prev;
        }

        // Connect the previous group to the 
      	// current reversed group
        if (tail != nullptr) {
            tail->next = prev;
            prev->prev = tail;
        }

        // Move tail to the end of the reversed group
        tail = groupHead;
    }

    return newHead;
}

void printList(Node *head) {
    Node *curr = head;
    while (curr != nullptr) {
        cout << curr->data << " ";
        curr = curr->next;
    }
    cout << endl;
}

int main() {
    
    // Creating a sample doubly linked list:
    // 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
    Node *head = new Node(1);
    head->next = new Node(2);
    head->next->prev = head;
    head->next->next = new Node(3);
    head->next->next->prev = head->next;
    head->next->next->next = new Node(4);
    head->next->next->next->prev = head->next->next;
    head->next->next->next->next = new Node(5);
    head->next->next->next->next->prev = head->next->next->next;
    head->next->next->next->next->next = new Node(6);
    head->next->next->next->next->next->prev = head->next->next->next->next;

    head = reverseKGroup(head, 2);
    printList(head);

    return 0;
}
C
// C code to reverse a doubly linked 
// list in groups of K size

#include <stdio.h>
#include <stdlib.h>

struct Node {
    int data;
    struct Node* next;
    struct Node* prev;
};

// Helper function to reverse K nodes iteratively
struct Node* reverseKGroup(struct Node* head, int k) {
    if (head == NULL) {
        return head;
    }

    struct Node* curr = head;
    struct Node* newHead = NULL;
    struct Node* tail = NULL;

    while (curr != NULL) {
        struct Node* groupHead = curr;
        struct Node* prev = NULL;
        struct Node* next = NULL;
        int count = 0;

        // Reverse the nodes in the current group
        while (curr != NULL && count < k) {
            next = curr->next;
            curr->next = prev;
            curr->prev = NULL;
            if (prev != NULL) {
                prev->prev = curr;
            }
            prev = curr;
            curr = next;
            count++;
        }

        // If newHead is null, set it to the 
      	// last node of the first group
        if (newHead == NULL) {
            newHead = prev;
        }

        // Connect the previous group 
      	// to the current reversed group
        if (tail != NULL) {
            tail->next = prev;
            prev->prev = tail;
        }

        // Move tail to the end of 
      	// the reversed group
        tail = groupHead;
    }

    return newHead;
}


void printList(struct Node* head) {
    struct Node* curr = head;
    while (curr != NULL) {
        printf("%d ", curr->data);
        curr = curr->next;
    }
    printf("\n");
}

struct Node* createNode(int data) {
    struct Node* newNode = 
      (struct Node*)malloc(sizeof(struct Node));
    newNode->data = data;
    newNode->next = NULL;
    newNode->prev = NULL;
    return newNode;
}

int main() {
  
    // Creating a sample doubly linked list:
    // 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
    struct Node* head = createNode(1);
    head->next = createNode(2);
    head->next->prev = head;
    head->next->next = createNode(3);
    head->next->next->prev = head->next;
    head->next->next->next = createNode(4);
    head->next->next->next->prev = head->next->next;
    head->next->next->next->next = createNode(5);
    head->next->next->next->next->prev = head->next->next->next;
    head->next->next->next->next->next = createNode(6);
    head->next->next->next->next->next->prev = head->next->next->next->next;

    head = reverseKGroup(head, 2);
    printList(head);

    return 0;
}
Java
// Java code to reverse a doubly linked 
// list in groups of K size

class Node {
    int data;
    Node next;
    Node prev;

    Node(int x) {
        data = x;
        next = null;
        prev = null;
    }
}

// Helper function to reverse K nodes iteratively
class GfG {
    public static Node reverseKGroup(Node head, int k) {
        if (head == null) {
            return head;
        }

        Node curr = head;
        Node newHead = null;
        Node tail = null;

        while (curr != null) {
            Node groupHead = curr;
            Node prev = null;
            Node next = null;
            int count = 0;

            // Reverse the nodes in the current group
            while (curr != null && count < k) {
                next = curr.next;
                curr.next = prev;
                curr.prev = null;
                if (prev != null) {
                    prev.prev = curr;
                }
                prev = curr;
                curr = next;
                count++;
            }

            // If newHead is null, set it to the
          	// last node of the first group
            if (newHead == null) {
                newHead = prev;
            }

            // Connect the previous group to the 
          	// current reversed group
            if (tail != null) {
                tail.next = prev;
                prev.prev = tail;
            }

            // Move tail to the end of the
          	//reversed group
            tail = groupHead;
        }

        return newHead;
    }

    // Function to print the doubly linked list
    public static void printList(Node head) {
        Node curr = head;
        while (curr != null) {
            System.out.print(curr.data + " ");
            curr = curr.next;
        }
        System.out.println();
    }

    public static void main(String[] args) {
      
        // Creating a sample doubly linked list:
        // 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
        Node head = new Node(1);
        head.next = new Node(2);
        head.next.prev = head;
        head.next.next = new Node(3);
        head.next.next.prev = head.next;
        head.next.next.next = new Node(4);
        head.next.next.next.prev = head.next.next;
        head.next.next.next.next = new Node(5);
        head.next.next.next.next.prev = head.next.next.next;
        head.next.next.next.next.next = new Node(6);
        head.next.next.next.next.next.prev = head.next.next.next.next;

        head = reverseKGroup(head, 2);
        printList(head);
    }
}
Python
# Python code to reverse a doubly linked
# list in groups of K size

class Node:
    def __init__(self, x):
        self.data = x
        self.next = None
        self.prev = None

# Helper function to reverse K nodes iteratively
def reverseKGroup(head, k):
    if head is None:
        return head

    curr = head
    newHead = None
    tail = None

    while curr is not None:
        groupHead = curr
        prev = None
        next_node = None
        count = 0

        # Reverse the nodes in the current group
        while curr is not None and count < k:
            next_node = curr.next
            curr.next = prev
            curr.prev = None
            if prev is not None:
                prev.prev = curr
            prev = curr
            curr = next_node
            count += 1

        # If newHead is null, set it to the last
        # node of the first group
        if newHead is None:
            newHead = prev

        # Connect the previous group to the
        # current reversed group
        if tail is not None:
            tail.next = prev
            prev.prev = tail

        # Move tail to the end of the reversed group
        tail = groupHead

    return newHead

def printList(head):
    curr = head
    while curr is not None:
        print(curr.data, end=" ")
        curr = curr.next
    print()

if __name__ == "__main__":
  
    # Creating a sample doubly linked list:
    # 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
    head = Node(1)
    head.next = Node(2)
    head.next.prev = head
    head.next.next = Node(3)
    head.next.next.prev = head.next
    head.next.next.next = Node(4)
    head.next.next.next.prev = head.next.next
    head.next.next.next.next = Node(5)
    head.next.next.next.next.prev = head.next.next.next
    head.next.next.next.next.next = Node(6)
    head.next.next.next.next.next.prev = head.next.next.next.next

    head = reverseKGroup(head, 2)
    printList(head)
C#
// C# code to reverse a doubly linked
// list in groups of K size

using System;

class Node {
    public int data;
    public Node next;
    public Node prev;

    public Node(int x) {
        data = x;
        next = null;
        prev = null;
    }
}

// Helper function to reverse K nodes iteratively
class GFG {
    static Node reverseKGroup(Node head, int k) {
        if (head == null) {
            return head;
        }

        Node curr = head;
        Node newHead = null;
        Node tail = null;

        while (curr != null) {
            Node groupHead = curr;
            Node prev = null;
            Node next = null;
            int count = 0;

            // Reverse the nodes in the current group
            while (curr != null && count < k) {
                next = curr.next;
                curr.next = prev;
                curr.prev = null;
                if (prev != null) {
                    prev.prev = curr;
                }
                prev = curr;
                curr = next;
                count++;
            }

            // If newHead is null, set it to the 
         	 // last node of the first group
            if (newHead == null) {
                newHead = prev;
            }

            // Connect the previous group to the
          	// current reversed group
            if (tail != null) {
                tail.next = prev;
                prev.prev = tail;
            }

            // Move tail to the end of the reversed group
            tail = groupHead;
        }

        return newHead;
    }

    static void printList(Node head) {
        Node curr = head;
        while (curr != null) {
            Console.Write(curr.data + " ");
            curr = curr.next;
        }
        Console.WriteLine();
    }

    static void Main() {
      
        // Creating a sample doubly linked list:
        // 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
        Node head = new Node(1);
        head.next = new Node(2);
        head.next.prev = head;
        head.next.next = new Node(3);
        head.next.next.prev = head.next;
        head.next.next.next = new Node(4);
        head.next.next.next.prev = head.next.next;
        head.next.next.next.next = new Node(5);
        head.next.next.next.next.prev = head.next.next.next;
        head.next.next.next.next.next = new Node(6);
        head.next.next.next.next.next.prev = head.next.next.next.next;

        head = reverseKGroup(head, 2);
        printList(head);
    }
}
JavaScript
// JavaScript code to reverse a doubly linked
// list in groups of K size

class Node {
    constructor(x) {
        this.data = x;
        this.next = null;
        this.prev = null;
    }
}

// Helper function to reverse K nodes iteratively
function reverseKGroup(head, k) {
    if (head === null) {
        return head;
    }

    let curr = head;
    let newHead = null;
    let tail = null;

    while (curr !== null) {
        let groupHead = curr;
        let prev = null;
        let next = null;
        let count = 0;

        // Reverse the nodes in the current group
        while (curr !== null && count < k) {
            next = curr.next;
            curr.next = prev;
            curr.prev = null;
            if (prev !== null) {
                prev.prev = curr;
            }
            prev = curr;
            curr = next;
            count++;
        }

        // If newHead is null, set it to the last
        // node of the first group
        if (newHead === null) {
            newHead = prev;
        }

        // Connect the previous group to the 
        // current reversed group
        if (tail !== null) {
            tail.next = prev;
            prev.prev = tail;
        }

        // Move tail to the end of the reversed group
        tail = groupHead;
    }

    return newHead;
}

function printList(head) {
    let curr = head;
    while (curr !== null) {
        console.log(curr.data + " ");
        curr = curr.next;
    }
}

// Creating a sample doubly linked list:
// 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6
let head = new Node(1);
head.next = new Node(2);
head.next.prev = head;
head.next.next = new Node(3);
head.next.next.prev = head.next;
head.next.next.next = new Node(4);
head.next.next.next.prev = head.next.next;
head.next.next.next.next = new Node(5);
head.next.next.next.next.prev = head.next.next.next;
head.next.next.next.next.next = new Node(6);
head.next.next.next.next.next.prev = head.next.next.next.next;

head = reverseKGroup(head, 2);
printList(head);

Output
2 1 4 3 6 5 

Time complexity: O(n), where n is the number of nodes in linked list.
Auxiliary Space: O(1)



Next Article

Similar Reads