Replace the column contains the values 'yes' and 'no' with True and False In Python-Pandas Last Updated : 28 Jul, 2020 Comments Improve Suggest changes Like Article Like Report Let’s discuss a program To change the values from a column that contains the values 'YES' and 'NO' with TRUE and FALSE. First, Let's see a dataset. Code: Python3 # import pandas library import pandas as pd # load csv file df = pd.read_csv("supermarkets.csv") # show the dataframe df Output : For downloading the used csv file Click Here. Now, Let's see the multiple ways to do this task: Method 1: Using Series.map(). This method is used to map values from two series having one column the same. Syntax: Series.map(arg, na_action=None). Return type: Pandas Series with the same as an index as a caller. Example: Replace the ‘commissioned' column contains the values 'yes' and 'no' with True and False.Code: Python3 # import pandas library import pandas as pd # load csv file df = pd.read_csv("supermarkets.csv") # replace the ‘commissioned' column contains # the values 'yes' and 'no' with # True and False: df['commissioned'] = df['commissioned'].map( {'yes':True ,'no':False}) # show the dataframe df Output : Method 2: Using DataFrame.replace(). This method is used to replace a string, regex, list, dictionary, series, number, etc. from a data frame. Syntax: DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=’pad’, axis=None) Return type: Updated Data frame Example: Replace the ‘commissioned' column contains the values 'yes' and 'no' with True and False.Code: Python3 # import pandas library import pandas as pd # load csv file df = pd.read_csv("supermarkets.csv") # replace the ‘commissioned' column # contains the values 'yes' and 'no' # with True and False: df = df.replace({'commissioned': {'yes': True, 'no': False}}) # show the dataframe df Output: Comment More infoAdvertise with us Next Article Replace the column contains the values 'yes' and 'no' with True and False In Python-Pandas A ashishsaini3 Follow Improve Article Tags : Python Python-pandas Python pandas-dataFrame Practice Tags : python Similar Reads How to Replace Values in Column Based on Condition in Pandas? Let's explore different methods to replace values in a Pandas DataFrame column based on conditions. Replace Values Using dataframe.loc[] FunctionThe dataframe.loc[] function allows us to access a subset of rows or columns based on specific conditions, and we can replace values in those subsets.df.lo 4 min read Replace values of a DataFrame with the value of another DataFrame in Pandas In this article, we will learn how we can replace values of a DataFrame with the value of another DataFrame using pandas. It can be done using the DataFrame.replace() method. It is used to replace a regex, string,  list, series, number, dictionary, etc. from a DataFrame, Values of the DataFrame met 4 min read Replacing column value of a CSV file in Python Let us see how we can replace the column value of a CSV file in Python. CSV file is nothing but a comma-delimited file. Method 1: Using Native Python way Using replace() method, we can replace easily a text into another text.  In the below code, let us have an input CSV file as "csvfile.csv" and be 2 min read Python | Pandas DataFrame.fillna() to replace Null values in dataframe Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Sometimes csv file has null values, which are later displayed as NaN in Data Frame. Ju 5 min read Pandas Replace Multiple Values in Python Replacing multiple values in a Pandas DataFrame or Series is a common operation in data manipulation tasks. Pandas provides several versatile methods for achieving this, allowing you to seamlessly replace specific values with desired alternatives. In this context, we will explore various approaches 5 min read Like