# Visualising the Training set results
# Install ElemStatLearn if not present
# in the packages using(without hashtag)
# install.packages('ElemStatLearn')
library(ElemStatLearn)
set = training_set
#Building a grid of Age Column(X1)
# and Estimated Salary(X2) Column
X1 = seq(min(set[, 1]) - 1,
max(set[, 1]) + 1,
by = 0.01)
X2 = seq(min(set[, 2]) - 1,
max(set[, 2]) + 1,
by = 0.01)
grid_set = expand.grid(X1, X2)
# Give name to the columns of matrix
colnames(grid_set) = c('Age',
'EstimatedSalary')
# Predicting the values and plotting
# them to grid and labelling the axes
y_grid = knn(train = training_set[, -3],
test = grid_set,
cl = training_set[, 3],
k = 5)
plot(set[, -3],
main = 'K-NN (Training set)',
xlab = 'Age', ylab = 'Estimated Salary',
xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid),
length(X1), length(X2)),
add = TRUE)
points(grid_set, pch = '.',
col = ifelse(y_grid == 1,
'springgreen3', 'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1,
'green4', 'red3'))