Reduce string to shortest length by deleting a pair of same adjacent characters
Last Updated :
13 Mar, 2023
Given a string str of lowercase characters. The task is to count the number of deletions required to reduce the string to its shortest length. In each delete operation, you can select a pair of adjacent lowercase letters that match, and then delete them. The task is to print the count of deletions done.
Examples:
Input: str = "aaabccddd"
Output: 3
Following are sequence of operations:
aaabccddd -> abccddd -> abddd -> abd
Input: str = "aa"
Output: 1
Approach:
- Initialize count = 1 initially.
- Iterate for every character, increase count if s[i]==s[i-1].
- If s[i]!=s[i-1], add count/2 to the number of steps, and re-initialize count to 1.
If s[i]!=s[i-1], then the number of deletions is increased by count/2. If the count is even, number of pairs will be count/2. If count is odd, then the number of deletions will be (count-1)/2 which is the same as (int)count/2.
Below is the implementation of the above approach:
C++
// C++ program to count deletions
// to reduce the string to its shortest
// length by deleting a pair of
// same adjacent characters
#include <bits/stdc++.h>
using namespace std;
// Function count the operations
int reduceString(string s, int l)
{
int count = 1, steps = 0;
// traverse in the string
for (int i = 1; i < l; i++) {
// if adjacent characters are same
if (s[i] == s[i - 1])
count += 1;
else {
// if same adjacent pairs are more than 1
steps += (count / 2);
count = 1;
}
}
steps += count / 2;
return steps;
}
// Driver Code
int main()
{
string s = "geeksforgeeks";
int l = s.length();
cout << reduceString(s, l) << endl;
return 0;
}
Java
// Java program to count deletions
// to reduce the string to its
// shortest length by deleting a
// pair of same adjacent characters
import java.io.*;
import java.util.*;
import java.lang.*;
class GFG
{
// Function count
// the operations
static int reduceString(String s,
int l)
{
int count = 1, steps = 0;
// traverse in the string
for (int i = 1; i < l; i++)
{
// if adjacent characters
// are same
if (s.charAt(i) == s.charAt(i - 1))
count += 1;
else
{
// if same adjacent pairs
// are more than 1
steps += (count / 2);
count = 1;
}
}
steps += count / 2;
return steps;
}
// Driver Code
public static void main(String[] args)
{
String s = "geeksforgeeks";
int l = s.length();
System.out.print(reduceString(s, l) + "\n");
}
}
Python3
# Python3 program to count
# deletions to reduce
# the string to its
# shortest length by
# deleting a pair of
# same adjacent characters
# Function count
# the operations
def reduceString(s, l):
count = 1;
steps = 0;
# traverse in
# the string
for i in range(1,l):
# if adjacent
# characters are same
if (s[i] is s[i - 1]):
count += 1;
else:
# if same adjacent pairs
# are more than 1
steps +=(int)(count / 2);
count = 1;
steps +=(int)(count / 2);
return steps;
# Driver Code
s = "geeksforgeeks";
l = len(s);
print(reduceString(s, l));
# This code contributed by Rajput-Ji
C#
// C# program to count deletions
// to reduce the string to its
// shortest length by deleting a
// pair of same adjacent characters
using System;
class GFG
{
// Function count
// the operations
static int reduce(string s,
int l)
{
int count = 1, step = 0;
// traverse in
// the string
for (int i = 1; i < l; i++)
{
// if adjacent characters
// are same
if (s[i] == s[i - 1])
count += 1;
else
{
// if same adjacent pairs
// are more than 1
step += (count / 2);
count = 1;
}
}
step += count / 2;
return step;
}
// Driver Code
public static void Main()
{
string s = "geeksforgeeks";
int l = s.Length;
Console.WriteLine(reduce(s, l));
}
}
// This code is contributed by
// Akanksha Rai(Abby_akku)
PHP
<?php
// PHP program to count
// deletions to reduce
// the string to its
// shortest length by
// deleting a pair of
// same adjacent characters
// Function count
// the operations
function reduceString($s, $l)
{
$count = 1;
$steps = 0;
// traverse in
// the string
for ($i = 1; $i < $l; $i++)
{
// if adjacent
// characters are same
if ($s[$i] == $s[$i - 1])
$count += 1;
else
{
// if same adjacent pairs
// are more than 1
$steps +=(int)($count / 2);
$count = 1;
}
}
$steps +=(int)($count / 2);
return $steps;
}
// Driver Code
$s = "geeksforgeeks";
$l = strlen($s);
echo reduceString($s, $l);
// This code is contributed by ajit
?>
JavaScript
<script>
// Javascript program to count deletions
// to reduce the string to its
// shortest length by deleting a
// pair of same adjacent characters
// Function count
// the operations
function reduce(s, l)
{
let count = 1, step = 0;
// Traverse in the string
for(let i = 1; i < l; i++)
{
// If adjacent characters
// are same
if (s[i] == s[i - 1])
count += 1;
else
{
// If same adjacent pairs
// are more than 1
step += parseInt(count / 2, 10);
count = 1;
}
}
step += parseInt(count / 2, 10);
return step;
}
// Driver code
let s = "geeksforgeeks";
let l = s.length;
document.write(reduce(s, l));
// This code is contributed by mukesh07
</script>
Time Complexity: O(N), where N is the length of the given string.
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem