Recovery from Deadlock in Operating System
Last Updated :
28 Dec, 2024
In today's world of computer systems and multitasking environments, deadlock is an undesirable situation that can bring operations to a halt. When multiple processes compete for exclusive access to resources and end up in a circular waiting pattern, a deadlock occurs. To maintain the smooth functioning of an operating system, it is crucial to implement recovery mechanisms that can break these deadlocks and restore the system's productivity.
What is Recovery from Deadlock in OS?
"Recovery from Deadlock in Operating Systems" refers to the set of techniques and algorithms designed to detect, resolve, or mitigate deadlock situations. These methods ensure that the system can continue processing tasks efficiently without being trapped in an eternal standstill. Let's take a closer look at some of the key strategies employed.
There is no mechanism implemented by the OS to avoid or prevent deadlocks. The system, therefore, assumes that a deadlock will undoubtedly occur. The OS periodically checks the system for any deadlocks in an effort to break them. The OS will use various recovery techniques to restore the system if it encounters any deadlocks. When a Deadlock Detection Algorithm determines that a deadlock has occurred in the system, the system must recover from that deadlock.
What is Deadlock?
In an operating system, a deadlock is a situation where a group of processes is stuck and unable to proceed because each one is waiting for a resource that another process in the group is holding.
Imagine four people at a round table, each with one fork, and they need two forks to eat. If everyone picks up the fork to their left and waits for the fork on their right, no one can eat. They are all stuck, waiting forever. This is a deadlock.
In technical terms, deadlock involves four conditions:
- Mutual Exclusion : Resources cannot be shared; they can only be used by one process at a time.
- Hold and Wait : Processes holding resources can request additional resources.
- No Preemption : Resources cannot be forcibly taken away from processes holding them.
- Circular Wait : A closed chain of processes exists, where each process holds at least one resource needed by the next process in the chain.
Having a deep understanding of deadlock recovery techniques is vital for anyone
Ways of Handling a Deadlock
There are several ways of handling a deadlock, some of which are mentioned below:
1. Process Termination
To eliminate the deadlock, we can simply kill one or more processes. For this, we use two methods:
- Abort all the Deadlocked Processes : Aborting all the processes will certainly break the deadlock but at a great expense. The deadlocked processes may have been computed for a long time, and the result of those partial computations must be discarded and there is a probability of recalculating them later.
- Abort one process at a time until the deadlock is eliminated : Abort one deadlocked process at a time, until the deadlock cycle is eliminated from the system. Due to this method, there may be considerable overhead, because, after aborting each process, we have to run a deadlock detection algorithm to check whether any processes are still deadlocked.
Advantages of Process Termination
- It is a simple method for breaking a deadlock.
- It ensures that the deadlock will be resolved quickly, as all processes involved in the deadlock are terminated simultaneously.
- It frees up resources that were being used by the deadlocked processes , making those resources available for other processes.
Disadvantages of Process Termination
- It can result in the loss of data and other resources that were being used by the terminated processes.
- It may cause further problems in the system if the terminated processes were critical to the system's operation.
- It may result in a waste of resources , as the terminated processes may have already completed a significant amount of work before being terminated.
2. Resource Preemption
To eliminate deadlocks using resource preemption, we preempt some resources from processes and give those resources to other processes. This method will raise three issues:
- Selecting a Victim : We must determine which resources and which processes are to be preempted and also in order to minimize the cost.
- Rollback : We must determine what should be done with the process from which resources are preempted. One simple idea is total rollback. That means aborting the process and restarting it.
- Starvation : In a system, it may happen that the same process is always picked as a victim. As a result, that process will never complete its designated task. This situation is called Starvation and must be avoided. One solution is that a process must be picked as a victim only a finite number of times.
Advantages of Resource Preemption
- It can help in breaking a deadlock without terminating any processes, thus preserving data and resources.
- It is more efficient than process termination as it targets only the resources that are causing the deadlock .
- It can potentially avoid the need for restarting the system.
Disadvantages of Resource Preemption
- It may lead to increased overhead due to the need for determining which resources and processes should be preempted.
- It may cause further problems if the preempted resources were critical to the system's operation.
- It may cause delays in the completion of processes if resources are frequently preempted.
3. Priority Inversion
A technique for breaking deadlocks in real-time systems is called priority inversion. This approach alters the order of the processes to prevent stalemates. A higher priority is given to the process that already has the needed resources, and a lower priority is given to the process that is still awaiting them. The inversion of priorities that can result from this approach can impair system performance and cause performance issues. Additionally, because higher-priority processes may continue to take precedence over lower-priority processes, this approach may starve lower-priority processes of resources.
4. RollBack
In database systems, rolling back is a common technique for breaking deadlocks. When using this technique, the system reverses the transactions of the involved processes to a time before the deadlock. The system must keep a log of all transactions and the system's condition at various points in time in order to use this method. The transactions can then be rolled back to the initial state and executed again by the system. This approach may result in significant delays in the transactions' execution and data loss.
Resource Allocation Graph (RAG) for Deadlock Detection
The resource allocation graph (RAG) is a popular technique for computer system deadlock detection. The RAG is a visual representation of the processes holding the resources and their current state of allocation. The resources and processes are represented by the graph's nodes, while their allocation relationships are shown by the graph's edges. A cycle in the graph of the RAG method denotes the presence of a deadlock. When a cycle is discovered, at least one resource needed by another process in the cycle is being held by each process in the cycle, causing a deadlock. The RAG method is a crucial tool in contemporary operating systems due to its high efficiency and ability to spot deadlocks quickly.
.png)
Conclusion
In conclusion, recovering from a deadlock in an operating system involves detecting the deadlock and then resolving it by either terminating some of the involved processes or preempting resources. These actions help free up the system and restore normal operations, though they may cause temporary disruptions.
Similar Reads
Operating System Tutorial An Operating System(OS) is a software that manages and handles hardware and software resources of a computing device. Responsible for managing and controlling all the activities and sharing of computer resources among different running applications.A low-level Software that includes all the basic fu
4 min read
OS Basics
Structure of Operating System
Types of OS
Batch Processing Operating SystemIn the beginning, computers were very large types of machinery that ran from a console table. In all-purpose, card readers or tape drivers were used for input, and punch cards, tape drives, and line printers were used for output. Operators had no direct interface with the system, and job implementat
6 min read
Multiprogramming in Operating SystemAs the name suggests, Multiprogramming means more than one program can be active at the same time. Before the operating system concept, only one program was to be loaded at a time and run. These systems were not efficient as the CPU was not used efficiently. For example, in a single-tasking system,
5 min read
Time Sharing Operating SystemMultiprogrammed, batched systems provide an environment where various system resources were used effectively, but it did not provide for user interaction with computer systems. Time-sharing is a logical extension of multiprogramming. The CPU performs many tasks by switches that are so frequent that
5 min read
What is a Network Operating System?The basic definition of an operating system is that the operating system is the interface between the computer hardware and the user. In daily life, we use the operating system on our devices which provides a good GUI, and many more features. Similarly, a network operating system(NOS) is software th
2 min read
Real Time Operating System (RTOS)Real-time operating systems (RTOS) are used in environments where a large number of events, mostly external to the computer system, must be accepted and processed in a short time or within certain deadlines. such applications are industrial control, telephone switching equipment, flight control, and
6 min read
Process Management
Introduction of Process ManagementProcess Management for a single tasking or batch processing system is easy as only one process is active at a time. With multiple processes (multiprogramming or multitasking) being active, the process management becomes complex as a CPU needs to be efficiently utilized by multiple processes. Multipl
8 min read
Process Table and Process Control Block (PCB)While creating a process, the operating system performs several operations. To identify the processes, it assigns a process identification number (PID) to each process. As the operating system supports multi-programming, it needs to keep track of all the processes. For this task, the process control
6 min read
Operations on ProcessesProcess operations refer to the actions or activities performed on processes in an operating system. These operations include creating, terminating, suspending, resuming, and communicating between processes. Operations on processes are crucial for managing and controlling the execution of programs i
5 min read
Process Schedulers in Operating SystemA process is the instance of a computer program in execution. Scheduling is important in operating systems with multiprogramming as multiple processes might be eligible for running at a time.One of the key responsibilities of an Operating System (OS) is to decide which programs will execute on the C
7 min read
Inter Process Communication (IPC)Processes need to communicate with each other in many situations. Inter-Process Communication or IPC is a mechanism that allows processes to communicate. It helps processes synchronize their activities, share information, and avoid conflicts while accessing shared resources.Types of Process Let us f
5 min read
Context Switching in Operating SystemContext Switching in an operating system is a critical function that allows the CPU to efficiently manage multiple processes. By saving the state of a currently active process and loading the state of another, the system can handle various tasks simultaneously without losing progress. This switching
4 min read
Preemptive and Non-Preemptive SchedulingIn operating systems, scheduling is the method by which processes are given access the CPU. Efficient scheduling is essential for optimal system performance and user experience. There are two primary types of CPU scheduling: preemptive and non-preemptive. Understanding the differences between preemp
5 min read
CPU Scheduling in OS
Threads in OS
Process Synchronization
Critical Section Problem Solution
Peterson's Algorithm in Process SynchronizationPeterson's Algorithm is a classic solution to the critical section problem in process synchronization. It ensures mutual exclusion meaning only one process can access the critical section at a time and avoids race conditions. The algorithm uses two shared variables to manage the turn-taking mechanis
15+ min read
Semaphores in Process SynchronizationSemaphores are a tool used in operating systems to help manage how different processes (or programs) share resources, like memory or data, without causing conflicts. A semaphore is a special kind of synchronization data that can be used only through specific synchronization primitives. Semaphores ar
15+ min read
Semaphores and its typesA semaphore is a tool used in computer science to manage how multiple programs or processes access shared resources, like memory or files, without causing conflicts. Semaphores are compound data types with two fields one is a Non-negative integer S.V(Semaphore Value) and the second is a set of proce
6 min read
Producer Consumer Problem using Semaphores | Set 1The Producer-Consumer problem is a classic synchronization issue in operating systems. It involves two types of processes: producers, which generate data, and consumers, which process that data. Both share a common buffer. The challenge is to ensure that the producer doesn't add data to a full buffe
4 min read
Readers-Writers Problem | Set 1 (Introduction and Readers Preference Solution)The readers-writer problem in operating systems is about managing access to shared data. It allows multiple readers to read data at the same time without issues but ensures that only one writer can write at a time, and no one can read while writing is happening. This helps prevent data corruption an
7 min read
Dining Philosopher Problem Using SemaphoresThe Dining Philosopher Problem states that K philosophers are seated around a circular table with one chopstick between each pair of philosophers. There is one chopstick between each philosopher. A philosopher may eat if he can pick up the two chopsticks adjacent to him. One chopstick may be picked
11 min read
Hardware Synchronization Algorithms : Unlock and Lock, Test and Set, SwapProcess Synchronization problems occur when two processes running concurrently share the same data or same variable. The value of that variable may not be updated correctly before its being used by a second process. Such a condition is known as Race Around Condition. There are a software as well as
4 min read
Deadlocks & Deadlock Handling Methods
Introduction of Deadlock in Operating SystemA deadlock is a situation where a set of processes is blocked because each process is holding a resource and waiting for another resource acquired by some other process. In this article, we will discuss deadlock, its necessary conditions, etc. in detail.Deadlock is a situation in computing where two
11 min read
Conditions for Deadlock in Operating SystemA deadlock is a situation where a set of processes is blocked because each process is holding a resource and waiting for another resource acquired by some other process. In this article, we will discuss what deadlock is and the necessary conditions required for deadlock.What is Deadlock?Deadlock is
8 min read
Banker's Algorithm in Operating SystemBanker's Algorithm is a resource allocation and deadlock avoidance algorithm used in operating systems. It ensures that a system remains in a safe state by carefully allocating resources to processes while avoiding unsafe states that could lead to deadlocks.The Banker's Algorithm is a smart way for
8 min read
Wait For Graph Deadlock Detection in Distributed SystemDeadlocks are a fundamental problem in distributed systems. A process may request resources in any order and a process can request resources while holding others. A Deadlock is a situation where a set of processes are blocked as each process in a Distributed system is holding some resources and that
5 min read
Handling DeadlocksDeadlock is a situation where a process or a set of processes is blocked, waiting for some other resource that is held by some other waiting process. It is an undesirable state of the system. In other words, Deadlock is a critical situation in computing where a process, or a group of processes, beco
8 min read
Deadlock Prevention And AvoidanceDeadlock prevention and avoidance are strategies used in computer systems to ensure that different processes can run smoothly without getting stuck waiting for each other forever. Think of it like a traffic system where cars (processes) must move through intersections (resources) without getting int
5 min read
Deadlock Detection And RecoveryDeadlock Detection and Recovery is the mechanism of detecting and resolving deadlocks in an operating system. In operating systems, deadlock recovery is important to keep everything running smoothly. A deadlock occurs when two or more processes are blocked, waiting for each other to release the reso
6 min read
Deadlock Ignorance in Operating SystemIn this article we will study in brief about what is Deadlock followed by Deadlock Ignorance in Operating System. What is Deadlock? If each process in the set of processes is waiting for an event that only another process in the set can cause it is actually referred as called Deadlock. In other word
5 min read
Recovery from Deadlock in Operating SystemIn today's world of computer systems and multitasking environments, deadlock is an undesirable situation that can bring operations to a halt. When multiple processes compete for exclusive access to resources and end up in a circular waiting pattern, a deadlock occurs. To maintain the smooth function
8 min read