Open In App

Rearrange an array to make similar indexed elements different from that of another array

Last Updated : 21 Nov, 2021
Comments
Improve
Suggest changes
Like Article
Like
Report

Given two sorted arrays A[] and B[] consisting of N distinct integers, the task is to rearrange the elements of array B[] such that, for every ith index, A[i] is not equal to B[i]. If multiple such arrangements exist, print any one of them. If no such arrangement exists, print -1.

Examples:

Input: A[] = {2, 4, 5, 8}, B[] = {2, 4, 5, 8}
Output: 4 2 8 5
Explanation:
Possible arrangements that satisfy the required conditions are {4, 2, 8, 5}, {8, 5, 4, 2} and {8, 5, 4, 2}.

Input: A[] = {1, 3, 4, 5}, B[] = {2, 4, 6, 7}
Output: 7 6 2 4

Naive approach: The simplest approach is to find all possible permutations of array B[] and print any permutation among them such that, for every ith index, A[i]) is not equal to B[i]

Time Complexity: O(N*N!)
Auxiliary Space: O(N)

Efficient Approach: To optimize the above approach, the idea is to use a Greedy Approach to find the required arrangement of array B[] by using the condition that both the arrays consist of N distinct elements in ascending order. Follow the steps below to solve the problem:

  • Reverse the given array B[].
  • If N is 1 and A[0] = B[0], then print -1.
  • Otherwise, iterate over the arrays, and check if A[i] equals to B[i] or not.
  • If A[i] equals to B[i], swap B[i] with B[i+1] and break the loop.
  • After the above steps, print the array B[].

Below is the implementation of the above approach:

C++14
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std; 

// Function to find the arrangement
// of array B[] such that element at
// each index of A[] and B[] are not equal
void RearrangeB(int A[], vector<int> B, int n)
{
    
    // Print not possible, if arrays
    // only have single equal element
    if (n == 1 && A[0] == B[0])
    {
        cout << "-1" << endl;
        return;
    }
 
    // Reverse array B
    for(int i = 0; i < n / 2; i++) 
    {
        int t = B[i];
        B[i] = B[n - i - 1];
        B[n - i - 1] = t;
    }
 
    // Traverse over arrays to check
    // if there is any index where
    // A[i] and B[i] are equal
    for(int i = 0; i < n - 1; i++)
    {
        
        // Swap B[i] with B[i - 1]
        if (B[i] == A[i])
        {
            int t = B[i + 1];
            B[i + 1] = B[i];
            B[i] = t;
 
            // Break the loop
            break;
        }
    }
 
    // Print required arrangement
    // of array B
    for(int k : B)
        cout << k << " ";
}
 
// Driver Code
int main()
{
    
    // Given arrays A[] and B[]
    int A[] = { 2, 4, 5, 8 };
    vector<int> B = { 2, 4, 5, 8 };
    
    // Length of array A[]
    int n = sizeof(A) / sizeof(A[0]); 
 
    // Function call
    RearrangeB(A, B, n);
}

// This code is contributed by sanjoy_62
Java
// Java program for the above approach

import java.util.*;
import java.lang.*;

class GFG {

    // Function to find the arrangement
    // of array B[] such that element at
    // each index of A[] and B[] are not equal
    static void RearrangeB(int[] A, int[] B)
    {
        // Length of array
        int n = A.length;

        // Print not possible, if arrays
        // only have single equal element
        if (n == 1 && A[0] == B[0]) {
            System.out.println("-1");
            return;
        }

        // Reverse array B
        for (int i = 0; i < n / 2; i++) {
            int t = B[i];
            B[i] = B[n - i - 1];
            B[n - i - 1] = t;
        }

        // Traverse over arrays to check
        // if there is any index where
        // A[i] and B[i] are equal
        for (int i = 0; i < n - 1; i++) {

            // Swap B[i] with B[i - 1]
            if (B[i] == A[i]) {
                int t = B[i + 1];
                B[i + 1] = B[i];
                B[i] = t;

                // Break the loop
                break;
            }
        }

        // Print required arrangement
        // of array B
        for (int k : B)
            System.out.print(k + " ");
    }

    // Driver Code
    public static void main(String[] args)
    {
        // Given arrays A[] and B[]
        int[] A = { 2, 4, 5, 8 };
        int[] B = { 2, 4, 5, 8 };

        // Function Call
        RearrangeB(A, B);
    }
}
Python3
# Python3 program for the above approach 

# Function to find the arrangement 
# of array B[] such that element at
# each index of A[] and B[] are not equal
def RearrangeB(A, B):

    # Length of array
    n = len(A)

    # Print not possible, if arrays
    # only have single equal element
    if (n == 1 and A[0] == B[0]):
        print(-1)
        return

    # Reverse array B
    for i in range(n // 2):
        t = B[i]
        B[i] = B[n - i - 1]
        B[n - i - 1] = t

    # Traverse over arrays to check
    # if there is any index where
    # A[i] and B[i] are equal
    for i in range(n - 1):
        
        # Swap B[i] with B[i - 1]
        if (B[i] == A[i]):
            B[i], B[i - 1] = B[i - 1], B[i]
            break

    # Print required arrangement
    # of array B
    for k in B:
        print(k, end = " ")

# Driver Code

# Given arrays A[] and B[]
A = [ 2, 4, 5, 8 ]
B = [ 2, 4, 5, 8 ]

# Function call
RearrangeB(A, B)

# This code is contributed by Shivam Singh
C#
// C# program for 
// the above approach
using System;
class GFG{

// Function to find the arrangement
// of array []B such that element at
// each index of []A and []B 
// are not equal
static void RearrangeB(int[] A, 
                       int[] B)
{
  // Length of array
  int n = A.Length;

  // Print not possible, if arrays
  // only have single equal element
  if (n == 1 && A[0] == B[0]) 
  {
    Console.WriteLine("-1");
    return;
  }

  // Reverse array B
  for (int i = 0; i < n / 2; i++) 
  {
    int t = B[i];
    B[i] = B[n - i - 1];
    B[n - i - 1] = t;
  }

  // Traverse over arrays to check
  // if there is any index where
  // A[i] and B[i] are equal
  for (int i = 0; i < n - 1; i++) 
  {
    // Swap B[i] with B[i - 1]
    if (B[i] == A[i]) 
    {
      int t = B[i + 1];
      B[i + 1] = B[i];
      B[i] = t;

      // Break the loop
      break;
    }
  }

  // Print required arrangement
  // of array B
  foreach (int k in B)
    Console.Write(k + " ");
}

// Driver Code
public static void Main(String[] args)
{
  // Given arrays []A and []B
  int[] A = {2, 4, 5, 8};
  int[] B = {2, 4, 5, 8};

  // Function Call
  RearrangeB(A, B);
}
}

// This code is contributed by 29AjayKumar 
JavaScript
<script>
// javascript program for the
// above approach

    // Function to find the arrangement
    // of array B[] such that element at
    // each index of A[] and B[] are not equal
    function RearrangeB( A, B)
    {
        // Length of array
        let n = A.length;
 
        // Print not possible, if arrays
        // only have single equal element
        if (n == 1 && A[0] == B[0]) {
            document.write("-1");
            return;
        }
 
        // Reverse array B
        for (let i = 0; i < n / 2; i++) {
            let t = B[i];
            B[i] = B[n - i - 1];
            B[n - i - 1] = t;
        }
 
        // Traverse over arrays to check
        // if there is any index where
        // A[i] and B[i] are equal
        for (let i = 0; i < n - 1; i++) {
 
            // Swap B[i] with B[i - 1]
            if (B[i] == A[i]) {
                let t = B[i + 1];
                B[i + 1] = B[i];
                B[i] = t;
 
                // Break the loop
                break;
            }
        }
 
        // Print required arrangement
        // of array B
        for (let k in B)
            document.write(B[k] + " ");
    }

 
// Driver Code

     // Given arrays A[] and B[]
        let A = [ 2, 4, 5, 8 ];
        let B = [ 2, 4, 5, 8 ];
 
        // Function Call
        RearrangeB(A, B);
        
        // This code is contributed by avijitmondal1998.
</script>

Output: 
8 5 4 2

Time Complexity: O(N)
Auxiliary Space: O(1)


Next Article
Article Tags :
Practice Tags :

Similar Reads