Range Queries to find the Element having Maximum Digit Sum
Last Updated :
21 Apr, 2023
Given an array Arr of N integers and Q queries, each query having a range from L to R. Find the element having maximum digit sum for the range L to R, and if more than one element has a maximum digit sum, then find the maximum element out of those.
Examples:
Input: Arr[] = { 16, 12, 43, 55}
Q = 2
L = 0, R = 3
L = 0, R = 2
Output: 55
43
Explanation:
The range (0, 3) in the 1st query has
[16, 12, 43, 55]. Here, the digit sums are:
for 16, 1 + 6 = 7
for 12, 1 + 2 = 3
for 43, 4 + 3 = 7
for 55, 5 + 5 = 10
Hence, the max digit sum is 10 and
max digit sum value is 55.
The range (0, 2) in the 1st query has
[16, 12, 43]. Here, the digit sums are:
for 16, 1 + 6 = 7
for 12, 1 + 2 = 3
for 43, 4 + 3 = 7
Hence, the max digit sum is 7 and
max digit sum value is max( 16, 43) = 43.
Naive Approach:
A simple solution is to run a loop from L to R and calculate the digit sum for each element and find the maximum digit sum element from L to R for every query.
Below is the implementation of the approach:
C++
// C++ code for the approach
#include <iostream>
using namespace std;
// Function to calculate the digit sum of a number
int digit_sum(int n)
{
int sum = 0;
while (n > 0) {
sum += n % 10;
n /= 10;
}
return sum;
}
// Function to find the element having maximum digit sum in
// the given range
int max_digit_sum(int arr[], int n, int l, int r)
{
int max_sum = -1, max_num = -1;
for (int i = l; i <= r; i++) {
int sum = digit_sum(arr[i]);
if (sum > max_sum) {
max_sum = sum;
max_num = arr[i];
}
else if (sum == max_sum && arr[i] > max_num) {
max_num = arr[i];
}
}
return max_num;
}
// Main function to handle the queries
int main()
{
// Input array
int arr[] = { 16, 12, 43, 55 };
// Calculates the length of array
int n = sizeof(arr) / sizeof(arr[0]);
// query 1
int l = 0, r = 3;
cout << max_digit_sum(arr, n, l, r) << endl;
// query 2
l = 0, r = 2;
cout << max_digit_sum(arr, n, l, r) << endl;
return 0;
}
Java
// Java code for the approach
import java.util.*;
public class GFG {
// Function to calculate the digit sum of a number
public static int digit_sum(int n)
{
int sum = 0;
while (n > 0) {
sum += n % 10;
n /= 10;
}
return sum;
}
// Function to find the element having maximum digit sum
// in
// the given range
public static int max_digit_sum(int[] arr, int n, int l,
int r)
{
int max_sum = -1, max_num = -1;
for (int i = l; i <= r; i++) {
int sum = digit_sum(arr[i]);
if (sum > max_sum) {
max_sum = sum;
max_num = arr[i];
}
else if (sum == max_sum && arr[i] > max_num) {
max_num = arr[i];
}
}
return max_num;
}
// Main function to handle the queries
public static void main(String[] args)
{
// Input array
int[] arr = { 16, 12, 43, 55 };
// Calculates the length of array
int n = arr.length;
// query 1
int l = 0, r = 3;
System.out.println(max_digit_sum(arr, n, l, r));
// query 2
l = 0;
r = 2;
System.out.println(max_digit_sum(arr, n, l, r));
}
}
Python3
# Python3 code for the approach
# Function to calculate the digit sum of a number
def digit_sum(n):
sum = 0
while n > 0:
sum += n % 10
n //= 10
return sum
# Function to find the element having maximum digit sum in the given range
def max_digit_sum(arr, l, r):
max_sum = -1
max_num = -1
for i in range(l, r+1):
sum = digit_sum(arr[i])
if sum > max_sum:
max_sum = sum
max_num = arr[i]
elif sum == max_sum and arr[i] > max_num:
max_num = arr[i]
return max_num
# Main function to handle the queries
if __name__ == '__main__':
# Input array
arr = [16, 12, 43, 55]
# Calculates the length of array
n = len(arr)
# query 1
l = 0
r = 3
print(max_digit_sum(arr, l, r))
# query 2
l = 0
r = 2
print(max_digit_sum(arr, l, r))
C#
using System;
namespace MaxDigitSum
{
class Program
{
// Function to calculate the digit sum of a number
static int DigitSum(int n)
{
int sum = 0;
while (n > 0)
{
sum += n % 10;
n /= 10;
}
return sum;
}
// Function to find the element having maximum digit sum in
// the given range
static int MaxDigitSum(int[] arr, int n, int l, int r)
{
int maxSum = -1, maxNum = -1;
for (int i = l; i <= r; i++)
{
int sum = DigitSum(arr[i]);
if (sum > maxSum)
{
maxSum = sum;
maxNum = arr[i];
}
else if (sum == maxSum && arr[i] > maxNum)
{
maxNum = arr[i];
}
}
return maxNum;
}
// Main function to handle the queries
static void Main(string[] args)
{
// Input array
int[] arr = { 16, 12, 43, 55 };
// Calculates the length of array
int n = arr.Length;
// query 1
int l = 0, r = 3;
Console.WriteLine(MaxDigitSum(arr, n, l, r));
// query 2
l = 0; r = 2;
Console.WriteLine(MaxDigitSum(arr, n, l, r));
}
}
}
JavaScript
function digitSum(n) {
let sum = 0;
while (n > 0) {
sum += n % 10;
n = Math.floor(n / 10);
}
return sum;
}
function maxDigitSum(arr, l, r) {
let maxSum = -1, maxNum = -1;
for (let i = l; i <= r; i++) {
let sum = digitSum(arr[i]);
if (sum > maxSum) {
maxSum = sum;
maxNum = arr[i];
}
else if (sum === maxSum && arr[i] > maxNum) {
maxNum = arr[i];
}
}
return maxNum;
}
// Example usage
let arr = [16, 12, 43, 55];
console.log(maxDigitSum(arr, 0, 3)); // Output: 55
console.log(maxDigitSum(arr, 0, 2)); // Output: 43
Time Complexity: O(Q * N * log10(Max)), where Max is the maximum value in arr.
Auxiliary Space: O(1).
Efficient Approach:
- An efficient approach will be to build a Segment Tree where each node stores two values(value and max_digit_sum), and do a range query on it to find the max digit sum and the corresponding element. But for building the segment tree we have to think about what to store on the nodes of the tree.
- For finding out the maximum digit sum value, we will require two things, one being the value and the other digit sum. The merging will return two things, the digit sum will store the max(max_digit_sum.left, max_digit_sum.right) in the segment tree and value will contain the corresponding element value.
- If we have a deep look into it, the max digit sum for any two range combining will either be the max digit sum from the left side or the max digit sum from the right side, whichever is maximum will taken into account.
- Representation of Segment trees:
- Leaf Nodes are the elements of the given array.
- Each internal node represents some merging of the leaf nodes. The merging may be different for different problems. For this problem, merging is the maximum of the max_digit_sum of leaves under a node.
- An array representation of the tree is used to represent Segment Trees. For each node at index i, the left child is at index 2*i+1, right child at 2*i+2 and the parent is at (i-1)/2.
- Construction of Segment Tree from a given array:
- We start with a segment arr[0 . . . n-1]. And every time we divide the current segment into two halves(if it has not yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we store the max_digit_sum and the value in the corresponding node.
- We then do a range query on the segment tree to find out the max_digit_sum for the given range and output the corresponding value.
Below is the implementation of the above approach.
C++
// C++ program to find
// maximum digit sum value
#include <bits/stdc++.h>
using namespace std;
// Struct two store two values in one node
struct Node {
int value;
int max_digit_sum;
};
Node tree[4 * 10000];
// Function to find the digit sum
// for a number
int digitSum(int x)
{
int sum = 0;
while (x) {
sum += (x % 10);
x /= 10;
}
}
// Function to build the segment tree
void build(int a[], int index, int beg, int end)
{
if (beg == end) {
// If there is one element in array,
tree[index].value = a[beg];
tree[index].max_digit_sum = digitSum(a[beg]);
}
else {
int mid = (beg + end) / 2;
// If there are more than one elements,
// then recur for left and right subtrees
build(a, 2 * index + 1, beg, mid);
build(a, 2 * index + 2, mid + 1, end);
if (tree[2 * index + 1].max_digit_sum >
tree[2 * index + 2].max_digit_sum)
{
tree[index].max_digit_sum =
tree[2 * index + 1].max_digit_sum;
tree[index].value =
tree[2 * index + 1].value;
}
else if (tree[2 * index + 2].max_digit_sum >
tree[2 * index + 1].max_digit_sum)
{
tree[index].max_digit_sum =
tree[2 * index + 2].max_digit_sum;
tree[index].value =
tree[2 * index + 2].value;
}
else
{
tree[index].max_digit_sum =
tree[2 * index + 2].max_digit_sum;
tree[index].value =
max(tree[2 * index + 2].value,
tree[2 * index + 1].value);
}
}
}
// Function to do the range query in the segment
// tree for the maximum digit sum
Node query(int index, int beg, int end,
int l, int r)
{
Node result;
result.value = result.max_digit_sum = -1;
// If segment of this node is outside the given
// range, then return the minimum value.
if (beg > r || end < l)
return result;
// If segment of this node is a part of given
// range, then return the node of the segment
if (beg >= l && end <= r)
return tree[index];
int mid = (beg + end) / 2;
// If left segment of this node falls out of
// range, then recur in the right side of
// the tree
if (l > mid)
return query(2 * index + 2, mid + 1,
end, l, r);
// If right segment of this node falls out of
// range, then recur in the left side of
// the tree
if (r <= mid)
return query(2 * index + 1, beg,
mid, l, r);
// If a part of this segment overlaps with
// the given range
Node left = query(2 * index + 1, beg,
mid, l, r);
Node right = query(2 * index + 2, mid + 1,
end, l, r);
if (left.max_digit_sum > right.max_digit_sum)
{
result.max_digit_sum = left.max_digit_sum;
result.value = left.value;
}
else if (right.max_digit_sum > left.max_digit_sum)
{
result.max_digit_sum = right.max_digit_sum;
result.value = right.value;
}
else
{
result.max_digit_sum = left.max_digit_sum;
result.value = max(right.value, left.value);
}
// Returns the value
return result;
}
// Driver code
int main()
{
int a[] = {16, 12, 43, 55};
// Calculates the length of array
int N = sizeof(a) / sizeof(a[0]);
// Calls the build function to build
// the segment tree
build(a, 0, 0, N - 1);
// Find the max digit-sum value between
// 0th and 3rd index of array
cout << query(0, 0, N - 1, 0, 3).value
<< endl;
// Find the max digit-sum value between
// 0th and 2nd index of array
cout << query(0, 0, N - 1, 0, 2).value
<< endl;
return 0;
}
Java
// Java program to find
// maximum digit sum value
import java.util.*;
class GFG{
// Struct two store two values
// in one node
static class Node
{
int value;
int max_digit_sum;
};
static Node []tree = new Node[4 * 10000];
// Function to find the digit sum
// for a number
static int digitSum(int x)
{
int sum = 0;
while (x > 0)
{
sum += (x % 10);
x /= 10;
}
return sum;
}
// Function to build the segment tree
static void build(int a[], int index,
int beg, int end)
{
if (beg == end)
{
// If there is one element in array,
tree[index].value = a[beg];
tree[index].max_digit_sum = digitSum(a[beg]);
}
else
{
int mid = (beg + end) / 2;
// If there are more than one elements,
// then recur for left and right subtrees
build(a, 2 * index + 1, beg, mid);
build(a, 2 * index + 2, mid + 1, end);
if (tree[2 * index + 1].max_digit_sum >
tree[2 * index + 2].max_digit_sum)
{
tree[index].max_digit_sum =
tree[2 * index + 1].max_digit_sum;
tree[index].value =
tree[2 * index + 1].value;
}
else if (tree[2 * index + 2].max_digit_sum >
tree[2 * index + 1].max_digit_sum)
{
tree[index].max_digit_sum =
tree[2 * index + 2].max_digit_sum;
tree[index].value =
tree[2 * index + 2].value;
}
else
{
tree[index].max_digit_sum =
tree[2 * index + 2].max_digit_sum;
tree[index].value =
Math.max(tree[2 * index + 2].value,
tree[2 * index + 1].value);
}
}
}
// Function to do the range query in the segment
// tree for the maximum digit sum
static Node query(int index, int beg, int end,
int l, int r)
{
Node result = new Node();
result.value = result.max_digit_sum = -1;
// If segment of this node is outside the given
// range, then return the minimum value.
if (beg > r || end < l)
return result;
// If segment of this node is a part of given
// range, then return the node of the segment
if (beg >= l && end <= r)
return tree[index];
int mid = (beg + end) / 2;
// If left segment of this node falls out of
// range, then recur in the right side of
// the tree
if (l > mid)
return query(2 * index + 2, mid + 1,
end, l, r);
// If right segment of this node falls out of
// range, then recur in the left side of
// the tree
if (r <= mid)
return query(2 * index + 1, beg,
mid, l, r);
// If a part of this segment overlaps with
// the given range
Node left = query(2 * index + 1, beg,
mid, l, r);
Node right = query(2 * index + 2, mid + 1,
end, l, r);
if (left.max_digit_sum > right.max_digit_sum)
{
result.max_digit_sum = left.max_digit_sum;
result.value = left.value;
}
else if (right.max_digit_sum > left.max_digit_sum)
{
result.max_digit_sum = right.max_digit_sum;
result.value = right.value;
}
else
{
result.max_digit_sum = left.max_digit_sum;
result.value = Math.max(right.value,
left.value);
}
// Returns the value
return result;
}
// Driver code
public static void main(String[] args)
{
int a[] = { 16, 12, 43, 55 };
// Calculates the length of array
int N = a.length;
for(int i = 0; i < tree.length; i++)
tree[i] = new Node();
// Calls the build function to build
// the segment tree
build(a, 0, 0, N - 1);
// Find the max digit-sum value between
// 0th and 3rd index of array
System.out.print(
query(0, 0, N - 1, 0, 3).value + "\n");
// Find the max digit-sum value between
// 0th and 2nd index of array
System.out.print(
query(0, 0, N - 1, 0, 2).value + "\n");
}
}
// This code is contributed by Amit Katiyar
Python3
# Python3 program to find
# maximum digit sum value
# Struct two store two values in one node
class Node:
def __init__(self):
self.value = 0
self.max_digit_sum = 0
tree = [Node() for i in range(4 * 10000)]
# Function to find the digit sum
# for a number
def digitSum(x):
sum = 0;
while(x != 0):
sum += (x % 10)
x //= 10
return sum
# Function to build the segment tree
def build(a, index, beg, end):
if (beg == end):
# If there is one element in array,
tree[index].value = a[beg]
tree[index].max_digit_sum = digitSum(a[beg])
else:
mid = (beg + end) // 2
# If there are more than one elements,
# then recur for left and right subtrees
build(a, 2 * index + 1, beg, mid)
build(a, 2 * index + 2, mid + 1, end)
if (tree[2 * index + 1].max_digit_sum >
tree[2 * index + 2].max_digit_sum):
tree[index].max_digit_sum = tree[2 * index + 1].max_digit_sum
tree[index].value = tree[2 * index + 1].value
elif (tree[2 * index + 2].max_digit_sum >
tree[2 * index + 1].max_digit_sum):
tree[index].max_digit_sum = tree[2 * index + 2].max_digit_sum
tree[index].value = tree[2 * index + 2].value
else:
tree[index].max_digit_sum = tree[2 * index + 2].max_digit_sum
tree[index].value = max(tree[2 * index + 2].value,
tree[2 * index + 1].value)
# Function to do the range query in the segment
# tree for the maximum digit sum
def query(index, beg, end, l, r):
result = Node()
result.value = result.max_digit_sum = -1
# If segment of this node is outside the given
# range, then return the minimum value.
if (beg > r or end < l):
return result
# If segment of this node is a part of given
# range, then return the node of the segment
if (beg >= l and end <= r):
return tree[index]
mid = (beg + end) // 2
# If left segment of this node falls out of
# range, then recur in the right side of
# the tree
if (l > mid):
return query(2 * index + 2, mid + 1, end, l, r)
# If right segment of this node falls out of
# range, then recur in the left side of
# the tree
if (r <= mid):
return query(2 * index + 1, beg, mid, l, r)
# If a part of this segment overlaps with
# the given range
left = query(2 * index + 1, beg, mid, l, r)
right = query(2 * index + 2, mid + 1, end, l, r)
if (left.max_digit_sum > right.max_digit_sum):
result.max_digit_sum = left.max_digit_sum
result.value = left.value
elif (right.max_digit_sum > left.max_digit_sum):
result.max_digit_sum = right.max_digit_sum
result.value = right.value
else:
result.max_digit_sum = left.max_digit_sum
result.value = max(right.value, left.value)
# Returns the value
return result
# Driver code
if __name__=="__main__":
a = [ 16, 12, 43, 55 ]
# Calculates the length of array
N = len(a)
# Calls the build function to build
# the segment tree
build(a, 0, 0, N - 1)
# Find the max digit-sum value between
# 0th and 3rd index of array
print(query(0, 0, N - 1, 0, 3).value)
# Find the max digit-sum value between
# 0th and 2nd index of array
print(query(0, 0, N - 1, 0, 2).value)
# This code is contributed by rutvik_56
C#
// C# program to find
// maximum digit sum value
using System;
class GFG{
// Struct two store
// two values in one node
class Node
{
public int value;
public int max_digit_sum;
};
static Node []tree = new Node[4 * 10000];
// Function to find the digit sum
// for a number
static int digitSum(int x)
{
int sum = 0;
while (x > 0)
{
sum += (x % 10);
x /= 10;
}
return sum;
}
// Function to build the segment tree
static void build(int []a, int index,
int beg, int end)
{
if (beg == end)
{
// If there is one element in array,
tree[index].value = a[beg];
tree[index].max_digit_sum =
digitSum(a[beg]);
}
else
{
int mid = (beg + end) / 2;
// If there are more than one elements,
// then recur for left and right subtrees
build(a, 2 * index + 1, beg, mid);
build(a, 2 * index + 2, mid + 1, end);
if (tree[2 * index + 1].max_digit_sum >
tree[2 * index + 2].max_digit_sum)
{
tree[index].max_digit_sum =
tree[2 * index + 1].max_digit_sum;
tree[index].value =
tree[2 * index + 1].value;
}
else if (tree[2 * index + 2].max_digit_sum >
tree[2 * index + 1].max_digit_sum)
{
tree[index].max_digit_sum =
tree[2 * index + 2].max_digit_sum;
tree[index].value =
tree[2 * index + 2].value;
}
else
{
tree[index].max_digit_sum =
tree[2 * index + 2].max_digit_sum;
tree[index].value =
Math.Max(tree[2 * index + 2].value,
tree[2 * index + 1].value);
}
}
}
// Function to do the range query
// in the segment tree for the
// maximum digit sum
static Node query(int index, int beg,
int end, int l, int r)
{
Node result = new Node();
result.value = result.max_digit_sum = -1;
// If segment of this node is
// outside the given range,
// then return the minimum value.
if (beg > r || end < l)
return result;
// If segment of this node
// is a part of given range,
// then return the node of the segment
if (beg >= l && end <= r)
return tree[index];
int mid = (beg + end) / 2;
// If left segment of this
// node falls out of range,
// then recur in the right
// side of the tree
if (l > mid)
return query(2 * index + 2, mid + 1,
end, l, r);
// If right segment of this
// node falls out of range,
// then recur in the left side of
// the tree
if (r <= mid)
return query(2 * index + 1, beg,
mid, l, r);
// If a part of this segment
// overlaps with the given range
Node left = query(2 * index + 1, beg,
mid, l, r);
Node right = query(2 * index + 2, mid + 1,
end, l, r);
if (left.max_digit_sum > right.max_digit_sum)
{
result.max_digit_sum = left.max_digit_sum;
result.value = left.value;
}
else if (right.max_digit_sum > left.max_digit_sum)
{
result.max_digit_sum = right.max_digit_sum;
result.value = right.value;
}
else
{
result.max_digit_sum = left.max_digit_sum;
result.value = Math.Max(right.value,
left.value);
}
// Returns the value
return result;
}
// Driver code
public static void Main(String[] args)
{
int []a = {16, 12, 43, 55};
// Calculates the length
// of array
int N = a.Length;
for(int i = 0; i < tree.Length; i++)
tree[i] = new Node();
// Calls the build function
// to build the segment tree
build(a, 0, 0, N - 1);
// Find the max digit-sum value between
// 0th and 3rd index of array
Console.Write(query(0, 0,
N - 1,
0, 3).value + "\n");
// Find the max digit-sum value between
// 0th and 2nd index of array
Console.Write(query(0, 0,
N - 1,
0, 2).value + "\n");
}
}
// This code is contributed by Rajput-Ji
JavaScript
<script>
// Javascript program to find maximum digit sum value
// Struct two store two values in one node
class Node
{
constructor() {
this.value = 0;
this.max_digit_sum = 0;
}
}
let tree = new Array(4 * 10000);
// Function to find the digit sum for a number
function digitSum(x)
{
let sum = 0;
while (x > 0)
{
sum += (x % 10);
x = parseInt(x / 10, 10);
}
return sum;
}
// Function to build the segment tree
function build(a, index, beg, end)
{
if (beg == end)
{
// If there is one element in array,
tree[index].value = a[beg];
tree[index].max_digit_sum = digitSum(a[beg]);
}
else
{
let mid = parseInt((beg + end) / 2, 10);
// If there are more than one elements,
// then recur for left and right subtrees
build(a, 2 * index + 1, beg, mid);
build(a, 2 * index + 2, mid + 1, end);
if (tree[2 * index + 1].max_digit_sum >
tree[2 * index + 2].max_digit_sum)
{
tree[index].max_digit_sum =
tree[2 * index + 1].max_digit_sum;
tree[index].value =
tree[2 * index + 1].value;
}
else if (tree[2 * index + 2].max_digit_sum >
tree[2 * index + 1].max_digit_sum)
{
tree[index].max_digit_sum =
tree[2 * index + 2].max_digit_sum;
tree[index].value =
tree[2 * index + 2].value;
}
else
{
tree[index].max_digit_sum =
tree[2 * index + 2].max_digit_sum;
tree[index].value =
Math.max(tree[2 * index + 2].value,
tree[2 * index + 1].value);
}
}
}
// Function to do the range query
// in the segment tree for the
// maximum digit sum
function query(index, beg, end, l, r)
{
let result = new Node();
result.value = result.max_digit_sum = -1;
// If segment of this node is
// outside the given range,
// then return the minimum value.
if (beg > r || end < l)
return result;
// If segment of this node
// is a part of given range,
// then return the node of the segment
if (beg >= l && end <= r)
return tree[index];
let mid = parseInt((beg + end) / 2, 10);
// If left segment of this
// node falls out of range,
// then recur in the right
// side of the tree
if (l > mid)
return query(2 * index + 2, mid + 1, end, l, r);
// If right segment of this
// node falls out of range,
// then recur in the left side of
// the tree
if (r <= mid)
return query(2 * index + 1, beg, mid, l, r);
// If a part of this segment
// overlaps with the given range
let left = query(2 * index + 1, beg,
mid, l, r);
let right = query(2 * index + 2, mid + 1,
end, l, r);
if (left.max_digit_sum > right.max_digit_sum)
{
result.max_digit_sum = left.max_digit_sum;
result.value = left.value;
}
else if (right.max_digit_sum > left.max_digit_sum)
{
result.max_digit_sum = right.max_digit_sum;
result.value = right.value;
}
else
{
result.max_digit_sum = left.max_digit_sum;
result.value = Math.max(right.value, left.value);
}
// Returns the value
return result;
}
let a = [16, 12, 43, 55];
// Calculates the length
// of array
let N = a.length;
for(let i = 0; i < tree.length; i++)
tree[i] = new Node();
// Calls the build function
// to build the segment tree
build(a, 0, 0, N - 1);
// Find the max digit-sum value between
// 0th and 3rd index of array
document.write(query(0, 0,
N - 1,
0, 3).value + "</br>");
// Find the max digit-sum value between
// 0th and 2nd index of array
document.write(query(0, 0,
N - 1,
0, 2).value + "</br>");
// This code is contributed by divyeshrabadiya07.
</script>
Complexity Analysis:
Time Complexity for tree construction is O(N). There are total 2n-1 nodes, and the value of every node is calculated only once in tree construction.
Time complexity to every query is O(log N).
Time complexity for the problem is O(Q * log N)
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms
DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort
QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials
Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
Bubble Sort Algorithm
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph
Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation
Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Data Structures Tutorial
Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Insertion Sort Algorithm
Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Dijkstra's Algorithm to find Shortest Paths from a Source to all
Given a weighted undirected graph represented as an edge list and a source vertex src, find the shortest path distances from the source vertex to all other vertices in the graph. The graph contains V vertices, numbered from 0 to V - 1.Note: The given graph does not contain any negative edge. Example
12 min read
Selection Sort
Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read