An array A consists of n integers in locations A[0], A[1] ....A[n-1]. It is required to shift the elements of the array cyclically to the left by k places, where 1 <= k <= (n-1). An incomplete algorithm for doing this in linear time, without using another array is given below. Complete the algorithm by filling in the blanks. Assume alt the variables are suitably declared.
min = n; i = 0;
while (___________) {
temp = A[i]; j = i;
while (________) {
A[j] = ________
j= (j + k) mod n ;
If ( j< min ) then
min = j;
}
A[(n + i — k) mod n] = _________
i = __________
i > min; j!= (n+i)mod n; A[j + k]; temp; i + 1 ;
i < min; j!= (n+i)mod n; A[j + k]; temp; i + 1;
i > min; j!= (n+i+k)mod n; A[(j + k)]; temp; i + 1;
i < min; j!= (n+i-k)mod n; A[(j + k)mod n]; temp; i + 1;
This question is part of this quiz :
Top MCQs on Array Data Structure with Answers,ISRO CS 2018,Top 50 Data Structures MCQs with Answers