Queries to search an element in an array and move it to front after every query
Last Updated :
27 Sep, 2022
Given an integer M which represents an array initially having numbers 1 to M. Also given is a Query array. For every query, search the number in the initial array and bring it to the front of the array. The task is to return the indexes of the searched element in the given array for every query.
Examples:
Input : Q[] = {3, 1, 2, 1}, M = 5
Output : [2, 1, 2, 1]
Explanations :
Since m = 5 the initial array is [1, 2, 3, 4, 5].
Query1: Search for 3 in the [1, 2, 3, 4, 5] and move it in the beginning. After moving, the array looks like [3, 1, 2, 4, 5]. 3 is at index 2.
Query2: Move 1 from [3, 1, 2, 4, 5] to the beginning of the array to make the array look like [1, 3, 2, 4, 5]. 1 is present at index 1.
Query3: Move 2 from [1, 3, 2, 4, 5] to the beginning of the array to make the array look like [2, 1, 3, 2, 4, 5]. 2 is present at index 2.
Query4: Move 1 from [2, 1, 3, 4, 5] to the beginning of the array to make the array look like [1, 2, 3, 4, 5]. 1 is present at index 1.
Input : Q[] = {4, 1, 2, 2}, M = 4
Output : 3, 1, 2, 0
Naive approach: The naive approach is to use a hash table to search for the element and linearly do shifts by performing swaps. The time complexity will be quadratic in nature for this approach.
Below is the naive implementation of the above approach:
C++
// C++ program to search the element
// in an array for every query and
// move the searched element to
// the front after every query
#include <bits/stdc++.h>
using namespace std;
// Function to find the indices
vector<int> processQueries(int Q[], int m, int n)
{
int a[m + 1], pos[m + 1];
for (int i = 1; i <= m; i++) {
a[i - 1] = i;
pos[i] = i - 1;
}
vector<int> ans;
// iterate in the query array
for (int i = 0; i < n; i++) {
int q = Q[i];
// store current element
int p = pos[q];
ans.push_back(p);
for (int i = p; i > 0; i--) {
// swap positions of the element
swap(a[i], a[i - 1]);
pos[a[i]] = i;
}
pos[a[0]] = 0;
}
// return the result
return ans;
}
// Driver code
int main()
{
// initialise array
int Q[] = { 3, 1, 2, 1 };
int n = sizeof(Q) / sizeof(Q[0]);
int m = 5;
vector<int> ans;
// Function call
ans = processQueries(Q, m, n);
// Print answers to queries
for (int i = 0; i < ans.size(); i++)
cout << ans[i] << " ";
return 0;
}
Java
// Java program to search the element
// in an array for every query and
// move the searched element to
// the front after every query
import java.util.*;
class GFG{
// Function to find the indices
static Vector<Integer> processQueries(int Q[], int m, int n)
{
int []a = new int[m + 1];
int []pos = new int[m + 1];
for (int i = 1; i <= m; i++) {
a[i - 1] = i;
pos[i] = i - 1;
}
Vector<Integer> ans = new Vector<Integer>();
// iterate in the query array
for (int i = 0; i < n; i++) {
int q = Q[i];
// store current element
int p = pos[q];
ans.add(p);
for (int j = p; j > 0; j--) {
// swap positions of the element
a[j] = a[j] + a[j - 1];
a[j - 1] = a[j] - a[j - 1];
a[j] = a[j] - a[j - 1];
pos[a[j]] = j;
}
pos[a[0]] = 0;
}
// return the result
return ans;
}
// Driver code
public static void main(String[] args)
{
// initialise array
int Q[] = { 3, 1, 2, 1 };
int n = Q.length;
int m = 5;
Vector<Integer> ans = new Vector<Integer>();
// Function call
ans = processQueries(Q, m, n);
// Print answers to queries
for (int i = 0; i < ans.size(); i++)
System.out.print(ans.get(i)+ " ");
}
}
// This code is contributed by sapnasingh4991
Python3
# Python3 program to search the element
# in an array for every query and
# move the searched element to
# the front after every query
# Function to find the indices
def processQueries(Q, m, n) :
a = [0]*(m + 1); pos = [0]*(m + 1);
for i in range(1, m + 1) :
a[i - 1] = i;
pos[i] = i - 1;
ans = [];
# iterate in the query array
for i in range(n) :
q = Q[i];
# store current element
p = pos[q];
ans.append(p);
for i in range(p,0,-1) :
# swap positions of the element
a[i], a[i - 1] = a[i - 1],a[i];
pos[a[i]] = i;
pos[a[0]] = 0;
# return the result
return ans;
# Driver code
if __name__ == "__main__" :
# initialise array
Q = [ 3, 1, 2, 1 ];
n = len(Q);
m = 5;
ans = [];
# Function call
ans = processQueries(Q, m, n);
# Print answers to queries
for i in range(len(ans)) :
print(ans[i],end=" ");
# This code is contributed by Yash_R
C#
// C# program to search the element
// in an array for every query and
// move the searched element to
// the front after every query
using System;
using System.Collections.Generic;
public class GFG{
// Function to find the indices
static List<int> processQueries(int []Q, int m, int n)
{
int []a = new int[m + 1];
int []pos = new int[m + 1];
for(int i = 1; i <= m; i++)
{
a[i - 1] = i;
pos[i] = i - 1;
}
List<int> ans = new List<int>();
// Iterate in the query array
for(int i = 0; i < n; i++)
{
int q = Q[i];
// Store current element
int p = pos[q];
ans.Add(p);
for(int j = p; j > 0; j--)
{
// Swap positions of the element
a[j] = a[j] + a[j - 1];
a[j - 1] = a[j] - a[j - 1];
a[j] = a[j] - a[j - 1];
pos[a[j]] = j;
}
pos[a[0]] = 0;
}
// Return the result
return ans;
}
// Driver code
public static void Main(String[] args)
{
// Initialise array
int []Q = { 3, 1, 2, 1 };
int n = Q.Length;
int m = 5;
List<int> ans = new List<int>();
// Function call
ans = processQueries(Q, m, n);
// Print answers to queries
for(int i = 0; i < ans.Count; i++)
Console.Write(ans[i] + " ");
}
}
// This code is contributed by sapnasingh4991
JavaScript
<script>
// JavaScript program to search the element
// in an array for every query and
// move the searched element to
// the front after every query
// Function to find the indices
function processQueries(Q,m,n)
{
let a = new Array(m + 1);
let pos = new Array(m + 1);
for (let i = 1; i <= m; i++) {
a[i - 1] = i;
pos[i] = i - 1;
}
let ans = [];
// iterate in the query array
for (let i = 0; i < n; i++) {
let q = Q[i];
// store current element
let p = pos[q];
ans.push(p);
for (let j = p; j > 0; j--) {
// swap positions of the element
a[j] = a[j] + a[j - 1];
a[j - 1] = a[j] - a[j - 1];
a[j] = a[j] - a[j - 1];
pos[a[j]] = j;
}
pos[a[0]] = 0;
}
// return the result
return ans;
}
// Driver code
// initialise array
let Q=[3, 1, 2, 1];
let n = Q.length;
let m = 5;
let ans=[];
// Function call
ans = processQueries(Q, m, n);
// Print answers to queries
for (let i = 0; i < ans.length; i++)
document.write(ans[i]+ " ");
// This code is contributed by rag2127
</script>
Time complexity: O(n*p)
Auxiliary space: O(m)
Efficient Approach: An efficient method to solve the above problem is to use Fenwick Tree. Using the below 3 operations, the problem can be solved.
- Push element in the front
- Find the index of a number
- Update the indexes of the rest of the elements.
Keep the elements in a sorted manner using the set data structure, and then follow the below-mentioned points:
- Instead of pushing the element to the front i.e assigning an index 0 for every query.
- We assign -1 for the first query, -2 for the second query, -3 for the third, and so on till -m.
- Doing so, the range of index’s updates to [-m, m]
- Perform a right shift for all values [-m, m] by a value of m, so our new range is [0, 2m]
- Initialize a Fenwick tree of size 2m and set all the values from [1…m] i.e [m..2m]
- For every query, find its position by finding the number of set elements lesser than the given query, once done set its position to 0 in the Fenwick tree.
Below is the implementation of the above approach:
C++
// C++ program to search the element
// in an array for every query and
// move the searched element to
// the front after every query
#include <bits/stdc++.h>
using namespace std;
// Function to update the fenwick tree
void update(vector<int>& tree, int i, int val)
{
// update the next element
while (i < tree.size()) {
tree[i] += val;
// move to the next
i += (i & (-i));
}
}
// Function to get the
// sum from the fenwick tree
int getSum(vector<int>& tree, int i)
{
int s = 0;
// keep adding till we have not
// reached the root of the tree
while (i > 0) {
s += tree[i];
// move to the parent
i -= (i & (-i));
}
return s;
}
// function to process the queries
vector<int> processQueries(vector<int>& queries, int m)
{
vector<int> res, tree((2 * m) + 1, 0);
// Hash-table
unordered_map<int, int> hmap;
// Iterate and increase the frequency
// count in the fenwick tree
for (int i = 1; i <= m; ++i) {
hmap[i] = i + m;
update(tree, i + m, 1);
}
// Traverse for all queries
for (int querie : queries) {
// Get the sum from the fenwick tree
res.push_back(getSum(tree, hmap[querie]) - 1);
// remove it from the fenwick tree
update(tree, hmap[querie], -1);
// Add it back at the first index
update(tree, m, 1);
hmap[querie] = m;
m--;
}
// return the final result
return res;
}
// Driver code
int main()
{
// initialise the Queries
vector<int> Queries = { 4, 1, 2, 2 };
// initialise M
int m = 4;
vector<int> ans;
ans = processQueries(Queries, m);
for (int i = 0; i < ans.size(); i++)
cout << ans[i] << " ";
return 0;
}
Java
// Java program to search the element
// in an array for every query and
// move the searched element to
// the front after every query
import java.util.*;
class GFG{
// Function to update the fenwick tree
static void update(int []tree, int i, int val)
{
// update the next element
while (i < tree.length)
{
tree[i] += val;
// move to the next
i += (i & (-i));
}
}
// Function to get the
// sum from the fenwick tree
static int getSum(int []tree, int i)
{
int s = 0;
// keep adding till we have not
// reached the root of the tree
while (i > 0)
{
s += tree[i];
// move to the parent
i -= (i & (-i));
}
return s;
}
// function to process the queries
static Vector<Integer> processQueries(int []queries,
int m)
{
Vector<Integer>res = new Vector<>();
int []tree = new int[(2 * m) + 1];
// Hash-table
HashMap<Integer,Integer> hmap = new HashMap<>();
// Iterate and increase the frequency
// count in the fenwick tree
for (int i = 1; i <= m; ++i)
{
hmap.put(i, i+m);
update(tree, i + m, 1);
}
// Traverse for all queries
for (int querie : queries)
{
// Get the sum from the fenwick tree
res.add(getSum(tree, hmap.get(querie) - 1));
// remove it from the fenwick tree
update(tree, hmap.get(querie), -1);
// Add it back at the first index
update(tree, m, 1);
hmap.put(querie, m);
m--;
}
// return the final result
return res;
}
// Driver code
public static void main(String[] args)
{
// initialise the Queries
int []Queries = { 4, 1, 2, 2 };
// initialise M
int m = 4;
Vector<Integer> ans;
ans = processQueries(Queries, m);
System.out.print(ans);
}
}
// This code is contributed by Rohit_ranjan
Python3
# Python3 program to search the element
# in an array for every query and
# move the searched element to
# the front after every query
# Function to update the fenwick tree
def update(tree, i, val):
# Update the next element
while (i < len(tree)):
tree[i] += val
# Move to the next
i += (i & (-i))
# Function to get the
# sum from the fenwick tree
def getSum(tree, i):
s = 0
# Keep adding till we have not
# reached the root of the tree
while (i > 0):
s += tree[i]
# Move to the parent
i -= (i & (-i))
return s
# Function to process the queries
def processQueries(queries, m):
res = []
tree = [0] * (2 * m + 1)
# Hash-table
hmap = {}
# Iterate and increase the frequency
# count in the fenwick tree
for i in range(1, m + 1):
hmap[i] = i + m
update(tree, i + m, 1)
# Traverse for all queries
for querie in queries:
# Get the sum from the fenwick tree
res.append(getSum(tree, hmap[querie]) - 1)
# Remove it from the fenwick tree
update(tree, hmap[querie], -1)
# Add it back at the first index
update(tree, m, 1)
hmap[querie] = m
m -= 1
# Return the final result
return res
# Driver code
if __name__ == "__main__":
# Initialise the Queries
Queries = [ 4, 1, 2, 2 ]
# Initialise M
m = 4
ans = processQueries(Queries, m)
for i in range(len(ans)):
print(ans[i], end = " ")
# This code is contributed by chitranayal
C#
// C# program to search the element
// in an array for every query and
// move the searched element to
// the front after every query
using System;
using System.Collections.Generic;
class GFG{
// Function to update the fenwick tree
static void update(int []tree,
int i, int val)
{
// update the next element
while (i < tree.Length)
{
tree[i] += val;
// move to the next
i += (i & (-i));
}
}
// Function to get the
// sum from the fenwick tree
static int getSum(int []tree, int i)
{
int s = 0;
// keep adding till we have not
// reached the root of the tree
while (i > 0)
{
s += tree[i];
// move to the parent
i -= (i & (-i));
}
return s;
}
// function to process the queries
static List<int> processQueries(int []queries,
int m)
{
List<int>res = new List<int>();
int []tree = new int[(2 * m) + 1];
// Hash-table
Dictionary<int,
int> hmap = new Dictionary<int,
int>();
// Iterate and increase the frequency
// count in the fenwick tree
for (int i = 1; i <= m; ++i)
{
hmap.Add(i, i+m);
update(tree, i + m, 1);
}
// Traverse for all queries
foreach (int querie in queries)
{
// Get the sum from the fenwick tree
res.Add(getSum(tree, hmap[querie] - 1));
// remove it from the fenwick tree
update(tree, hmap[querie], -1);
// Add it back at the first index
update(tree, m, 1);
if(hmap.ContainsKey(querie))
hmap[querie] = m;
else
hmap.Add(querie, m);
m--;
}
// return the readonly result
return res;
}
// Driver code
public static void Main(String[] args)
{
// initialise the Queries
int []Queries = {4, 1, 2, 2};
// initialise M
int m = 4;
List<int> ans;
ans = processQueries(Queries, m);
foreach (int i in ans)
Console.Write(i + " ");
}
}
// This code is contributed by shikhasingrajput
JavaScript
<script>
// Javascript program to search the element
// in an array for every query and
// move the searched element to
// the front after every query
// Function to update the fenwick tree
function update(tree,i,val)
{
// update the next element
while (i < tree.length)
{
tree[i] += val;
// move to the next
i += (i & (-i));
}
}
// Function to get the
// sum from the fenwick tree
function getSum(tree,i)
{
let s = 0;
// keep adding till we have not
// reached the root of the tree
while (i > 0)
{
s += tree[i];
// move to the parent
i -= (i & (-i));
}
return s;
}
// function to process the queries
function processQueries(queries,m)
{
let res = [];
let tree = new Array((2 * m) + 1);
for(let i=0;i<tree.length;i++)
{
tree[i]=0;
}
// Hash-table
let hmap = new Map();
// Iterate and increase the frequency
// count in the fenwick tree
for (let i = 1; i <= m; ++i)
{
hmap.set(i, i+m);
update(tree, i + m, 1);
}
// Traverse for all queries
for (let querie=0;querie< queries.length;querie++)
{
// Get the sum from the fenwick tree
res.push(getSum(tree, hmap.get(queries[querie]) - 1));
// remove it from the fenwick tree
update(tree, hmap.get(queries[querie]), -1);
// Add it back at the first index
update(tree, m, 1);
hmap.set(queries[querie], m);
m--;
}
// return the final result
return res;
}
// Driver code
let Queries=[4, 1, 2, 2];
// initialise M
let m = 4;
let ans;
ans = processQueries(Queries, m);
document.write(ans.join(" "));
// This code is contributed by avanitrachhadiya2155
</script>
Time complexity: O(nlogn)
Auxiliary space: O(n)
Similar Reads
Queries to search for an element in an array and modify the array based on given conditions
Given an array arr[] consisting of N integers and an integer X, the task is to print the array after performing X queries denoted by an array operations[]. The task for each query is as follows: If the array contains the integer operations[i], reverse the subarray starting from the index at which op
9 min read
Javascript Program for Search an element in a sorted and rotated array
An element in a sorted array can be found in O(log n) time via binary search. But suppose we rotate an ascending order sorted array at some pivot unknown to you beforehand. So for instance, 1 2 3 4 5 might become 3 4 5 1 2. Devise a way to find an element in the rotated array in O(log n) time. Exam
7 min read
Print Array after moving first occurrence of given element to end in given Array for Q queries
Given an array arr[] of N integers and an array query[] having Q integers, the task is to print the array arr[] after moving the first occurrence of query[i] to the end of the array arr[] for each i in the range [0, Q). Example: Input: arr[] = {1, 3, 1, 3}, query[] = {3, 1}Output: 1 3 3 1Explanation
7 min read
Count minimum number of "move-to-front" moves to sort an array
Given an array of size n such that array elements are in range from 1 to n. The task is to count a number of move-to-front operations to arrange items as {1, 2, 3,... n}. The move-to-front operation is to pick any item and place it in first position. This problem can also be seen as a stack of items
6 min read
Queries to find the maximum array element after removing elements from a given range
Given an array arr[] and an array Q[][] consisting of queries of the form of {L, R}, the task for each query is to find the maximum array element after removing array elements from the range of indices [L, R]. If the array becomes empty after removing the elements from given range of indices, then p
10 min read
Most frequent element in Array after replacing given index by K for Q queries
Given an array arr[] of size N, and Q queries of the form {i, k} for which, the task is to print the most frequent element in the array after replacing arr[i] by k.Example : Input: arr[] = {2, 2, 2, 3, 3}, Query = {{0, 3}, {4, 2}, {0, 4}} Output: 3 2 2 First query: Setting arr[0] = 3 modifies arr[]
10 min read
Queries to calculate sum of array elements present at every Yth index starting from the index X
Given an array arr[] of size N, and an array Q[][] with each row representing a query of the form { X, Y }, the task for each query is to find the sum of array elements present at indices X, X + Y, X + 2 * Y + ... Examples: Input: arr[] = { 1, 2, 7, 5, 4 }, Q[][] = { { 2, 1 }, { 3, 2 } } Output: 16
15+ min read
Find K-th smallest element in an array for multiple queries
Given an array arr[] of size N and an array Q[][] consisting of M queries that needs to be processed on the given array. It is known that these queries can be of the following two types: Type 1: If Q = 1, then add an element in the array {type, element_to_add}.Type 2: If Q = 2, then print the K-th s
9 min read
Array range queries for searching an element
Given an array of N elements and Q queries of the form L R X. For each query, you have to output if the element X exists in the array between the indices L and R(included). Prerequisite : Mo's Algorithms Examples : Input : N = 5 arr = [1, 1, 5, 4, 5] Q = 3 1 3 2 2 5 1 3 5 5 Output : No Yes Yes Expla
15+ min read
Search, Insert, and Delete in an Sorted Array | Array Operations
How to Search in a Sorted Array?In a sorted array, the search operation can be performed by using binary search.Below is the implementation of the above approach:C++// C++ program to implement binary search in sorted array #include <bits/stdc++.h> using namespace std; int binarySearch(int arr[
15+ min read