Open In App

Variations in different Sorting techniques in Python

Last Updated : 17 Nov, 2020
Comments
Improve
Suggest changes
2 Likes
Like
Report
These are all different types for sorting techniques that behave very differently. Let's study which technique works how and which one to use. Let 'a' be a numpy array
  • a.sort() (i) Sorts the array in-place & returns None (ii) Return type is None (iii) Occupies less space. No copy created as it directly sorts the original array (iv) Faster than sorted(a) Python3
    # Python code to sort an array in-place
    # using a.sort
    import numpy as np
    
    # Numpy array created
    a = np.array([9, 3, 1, 7, 4, 3, 6])
    
    # unsorted array print
    print('Original array:\n', a)
    
    # Return type is None
    print('Return type:', a.sort())
    
    # Sorted array output
    print('Original array sorted->', a)
    
    OUTPUT: For a.sort()
    Original array:
     [9 3 1 7 4 3 6]
    Return type: None
    Original array sorted-> [1 3 3 4 6 7 9]
    
  • sorted(a) (i) Creates a new list from the old & returns the new one, sorted (ii) Return type is a list (iii) Occupies more space as copy of original array is created and then sorting is done (iv) Slower than a.sort() Python3
    # Python code to create a sorted copy using
    # sorted()
    import numpy as np
    
    # Numpy array created
    a = np.array([9, 3, 1, 7, 4, 3, 6])
    
    # unsorted array print
    print('Original array:\n', a)
    b = sorted(a)
    
    # sorted list returned to b, b type is
    # <class 'list'> 
    print('New array sorted->', b)
    
    # original array no change
    print('Original array->', a)
    
    OUTPUT:a.sorted()
    Original array:
     [9 3 1 7 4 3 6]
    New array sorted-> [1, 3, 3, 4, 6, 7, 9]
    Original array-> [9 3 1 7 4 3 6]
    
  • np.argsort(a) (i) Returns the indices that would sort an array (ii) Return type is numpy array (iii) Occupies space as a new array of sorted indices is returned Python3
    # Python code to demonstrate working of np.argsort
    import numpy as np
    
    # Numpy array created
    a = np.array([9, 3, 1, 7, 4, 3, 6])
    
    # unsorted array print
    print('Original array:\n', a)
    
    # Sort array indices
    b = np.argsort(a)
    print('Sorted indices of original array->', b)
    
    # To get sorted array using sorted indices
    # c is temp array created of same len as of b
    c = np.zeros(len(b), dtype = int)
    for i in range(0, len(b)):
        c[i]= a[b[i]]
    print('Sorted array->', c)
    
    OUTPUT:np.argsort(a)
    Original array:
     [9 3 1 7 4 3 6]
    Sorted indices of original array-> [2 1 5 4 6 3 0]
    Sorted array-> [1 3 3 4 6 7 9]
    
  • np.lexsort((b, a)) (i) Perform an indirect sort using a sequence of keys (ii) Sort by a, then by b (iii) Return type ndarray of ints Array of indices that sort the keys along the specified axis (iv) Occupies space as a new array of sorted indices pair wise is returned. Python3
    # Python code to demonstrate working of 
    # np.lexsort()
    import numpy as np
    
    # Numpy array created
    a = np.array([9, 3, 1, 3, 4, 3, 6]) # First column
    b = np.array([4, 6, 9, 2, 1, 8, 7]) # Second column
    print('column a, column b')
    for (i, j) in zip(a, b):
        print(i, ' ', j)
    
    ind = np.lexsort((b, a)) # Sort by a then by b
    print('Sorted indices->', ind)
    
    OUTPUT:np.lexsort((b, a))
    column a, column b
    9   4
    3   6
    1   9
    3   2
    4   1
    3   8
    6   7
    Sorted indices-> [2 3 1 5 4 6 0]
    

Explore