scipy stats.arcsine() | Python Last Updated : 20 Mar, 2019 Summarize Comments Improve Suggest changes Share Like Article Like Report scipy.stats.arcsine() is an arcsine continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; 'm' = mean, 'v' = variance, 's' = Fisher's skew and 'k' = Fisher's kurtosis. (default = 'mv'). Results : arcsine continuous random variable Code #1 : Creating arcsine continuous random variable Python3 # importing scipy from scipy.stats import arcsine numargs = arcsine.numargs [ ] = [0.6, ] * numargs rv = arcsine() print ("RV : \n", rv) Output : RV : <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029484D796D8> Code #2 : arcsine random variates and probability distribution function. Python3 1== quantile = np.arange (0.01, 1, 0.1) # Random Variates R = arcsine.rvs(scale = 2, size = 10) print ("Random Variates : \n", R) # PDF R = arcsine.pdf(x = quantile, scale = 2) print ("\nProbability Distribution : \n", R) Output: Random Variates : [1.17353658 1.96350916 1.73419819 0.71255312 0.28760466 1.54410451 1.9644408 0.35014597 0.26798525 0.24599504] Probability Distribution : [2.25643896 0.69810843 0.51917523 0.43977033 0.39423905 0.3651505 0.34568283 0.33260295 0.32421577 0.31960693] Code #3 : Graphical Representation. Python3 # libraries import numpy as np import matplotlib.pyplot as plt distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) print ("Distribution : \n", distribution) plot = plt.plot(distribution, rv.pdf(distribution)) Output : Distribution : [0. 0.02040816 0.04081633 0.06122449 0.08163265 0.10204082 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878 0.36734694 0.3877551 0.40816327 0.42857143 0.44897959 0.46938776 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673 0.6122449 0.63265306 0.65306122 0.67346939 0.69387755 0.71428571 0.73469388 0.75510204 0.7755102 0.79591837 0.81632653 0.83673469 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367 0.97959184 1. ] Code #4: Varying Location and Scale Python3 1== from scipy.stats import arcsine import matplotlib.pyplot as plt import numpy as np a = 2 b = 2 x = np.linspace(0, np.minimum(rv.dist.b, 3)) # Varying location and scale y1 = arcsine.pdf(x, -0.1, .8) y2 = arcsine.pdf(x, -3.25, 3.25) plt.plot(x, y1, "*", x, y2, "r--") Comment More infoAdvertise with us Next Article scipy stats.arcsine() | Python V vishal3096 Follow Improve Article Tags : Python Python-scipy Python scipy-stats-functions Practice Tags : python Similar Reads scipy stats.cosine() | Python scipy.stats.cosine() is an cosine continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale paramet 2 min read scipy stats.chi() | Python scipy.stats.chi() is an chi continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional] location parameter. Default = 0 scale : [optional] scale parameter. 2 min read scipy.stats.chi2() | Python scipy.stats.chi2() is an chi square continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale param 2 min read scipy stats.f() | Python scipy.stats.f() is an F continuous random variable that is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability a, b : shape parameters x : quantiles loc : [optional] location parameter. Default = 0 scale : [optiona 2 min read scipy stats.fisk() | Python scipy.stats.fisk() is an fisk continuous random variable. It is also known as the log-logistic distribution, and equals the Burr distribution with d == 1 and is defined with a standard format and some shape parameters to complete its specification. Parameters : q : lower and upper tail probability x 2 min read Like