Open In App

scipy stats.arcsine() | Python

Last Updated : 20 Mar, 2019
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report
scipy.stats.arcsine() is an arcsine continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters : q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; 'm' = mean, 'v' = variance, 's' = Fisher's skew and 'k' = Fisher's kurtosis. (default = 'mv'). Results : arcsine continuous random variable
Code #1 : Creating arcsine continuous random variable Python3
# importing scipy
from scipy.stats import arcsine

numargs = arcsine.numargs
[ ] = [0.6, ] * numargs
rv = arcsine()

print ("RV : \n", rv)
Output :
RV :  
<scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029484D796D8>
Code #2 : arcsine random variates and probability distribution function. Python3 1==
quantile = np.arange (0.01, 1, 0.1)
 
# Random Variates
R = arcsine.rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)

# PDF
R = arcsine.pdf(x = quantile, scale = 2)
print ("\nProbability Distribution : \n", R)
Output:
Random Variates : 
 [1.17353658 1.96350916 1.73419819 0.71255312 0.28760466 1.54410451
 1.9644408  0.35014597 0.26798525 0.24599504]

Probability Distribution : 
 [2.25643896 0.69810843 0.51917523 0.43977033 0.39423905 0.3651505
 0.34568283 0.33260295 0.32421577 0.31960693]
Code #3 : Graphical Representation. Python3
# libraries
import numpy as np
import matplotlib.pyplot as plt

distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print ("Distribution : \n", distribution)

plot = plt.plot(distribution, rv.pdf(distribution))
Output :
Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]
Code #4: Varying Location and Scale Python3 1==
from scipy.stats import arcsine
import matplotlib.pyplot as plt
import numpy as np
a = 2
b = 2
x = np.linspace(0, np.minimum(rv.dist.b, 3))

# Varying location and scale
y1 = arcsine.pdf(x, -0.1, .8)
y2 = arcsine.pdf(x, -3.25, 3.25)
plt.plot(x, y1, "*", x, y2, "r--")

Next Article
Practice Tags :

Similar Reads