NumPy require() Method Last Updated : 23 Jul, 2025 Comments Improve Suggest changes Like Article Like Report The NumPy's require() method returns a ndarray that satisfies certain requirements. The numpy.require() method is useful for ensuring that an array has the correct flags, thereby satisfying the requirements for passing it to compiled code, possibly through ctypes. SyntaxSyntax: numpy.require(a, dtype=None, requirements=None) Parameters: a : array_likedtype : data-typerequirements : str or list of str The requirements list can be any of the following. 'F' : ‘F_CONTIGUOUS’ - ensure a Fortran-contiguous array.'C' : ‘C_CONTIGUOUS’ - ensure a C-contiguous array.'A' : 'ALIGNED’ - ensure a data-type aligned array.'W’ : ‘WRITABLE’ - ensure a writable array.‘O’ : ‘OWNDATA’ - ensure an array that owns its own data.‘E’ : ‘ENSUREARRAY’ - ensure a base array, instead of a subclass.Returns : ndarray Exception : ValueError - Raises ValueError ExamplesLet's look at some examples to understand require() method of the NumPy library in Python. Example 1: Python3 # Python program explaining # numpy.require() function # importing numpy import numpy as np # creating 4 x 4 array data = np.arange(16).reshape(4, 4) data.flags Output: C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : False WRITABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : FalseExample 2: Python3 import numpy as np # Python program explaining # numpy.require() b = np.require(data, dtype=np.float32, requirements=['A', 'W', 'O', 'C']) b.flags Output: C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : False Create Quiz Comment K kumar_satyam Follow 0 Improve K kumar_satyam Follow 0 Improve Article Tags : Python Python-numpy Python numpy-ndarray Explore Python FundamentalsPython Introduction 2 min read Input and Output in Python 4 min read Python Variables 4 min read Python Operators 4 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 5 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 10 min read Python Modules 3 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 4 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 3 min read StatsModel Library - Tutorial 3 min read Learning Model Building in Scikit-learn 6 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 6 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 5 min read Build a REST API using Flask - Python 3 min read Building a Simple API with Django REST Framework 3 min read Python PracticePython Quiz 1 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like