Difference between PyTorch and TensorFlow Last Updated : 22 Oct, 2020 Summarize Comments Improve Suggest changes Share Like Article Like Report There are various deep learning libraries but the two most famous libraries are PyTorch and Tensorflow. Though both are open source libraries but sometime it becomes difficult to figure out the difference between the two. They are extensively used in commercial code and academic research. PyTorch: It is an open-source library used in machine learning. It was developed by Facebook and was released to the public for the first time in 2016. It is imperative which means it runs immediately and the user can check if it is working or not before writing the full code. We can write a part of code and check it in real time, it is built-in python based implementation to provide compatibility as a deep learning platform. It rapidly gained users because of its user-friendly interface, which made the Tensorflow team acquire its popular features in Tensorflow 2.0. TensorFlow: Just like PyTorch, it is also an open-source library used in machine learning. It was developed by Google and was released in 2015. Its name itself expresses how you can perform and organize tasks on data. Production and research are the main uses of Tensorflow. Neural networks mostly use Tensorflow to develop machine learning applications. PyTorch V/S TensorFlow S.NoPytorchTensorFlow1It was developed by Facebook It was developed by Google2It was made using Torch library. It was deployed on Theano which is a python library3It works on a dynamic graph concept It believes on a static graph concept4Pytorch has fewer features as compared to Tensorflow.Its has a higher level functionality and provides broad spectrum of choices to work on.5Pytorch uses simple API which saves the entire weight of model. It has a major benefit that whole graph could be saved as protocol buffer. 6It is comparatively less supportive in deployments.It is more supportive for embedded and mobile deployments as compared to Pytorch7It has a smaller community. It has a larger community.8It is easy to learn and understand. It is comparatively hard to learn9It requires user to store everything into the device. Default settings are well-defined in Tensorflow.10It has a dynamic computational process. It requires the use of debugger tool. 11Some of its features or libraries are: PYRO, Horizon, CheXNet, etc.Some of its features or libraries are: Sonnet, Ludwig, Magenta, etc. Conclusion It cannot be said that one library is good and one is bad, both are very useful frameworks and are used on a large scale. Both are machine learning libraries which are used to do various tasks. Tensorflow is a useful tool with debugging capabilities and visualization, It also saves graph as a protocol buffer. On the other hand Pytorch is still getting momentum and tempting python developers because of it’s friendly usage. In nutshell Tensorflow is used to automate things faster and make artificial intelligence related products whereas developers which are more research oriented prefer using Pytorch. Comment More infoAdvertise with us Next Article Difference between PyTorch and TensorFlow A amansinghal2002 Follow Improve Article Tags : Python Difference Between Tensorflow Python-PyTorch Practice Tags : python Similar Reads Python Tutorial - Learn Python Programming Language Python is one of the most popular programming languages. Itâs simple to use, packed with features and supported by a wide range of libraries and frameworks. Its clean syntax makes it beginner-friendly. It'sA high-level language, used in web development, data science, automation, AI and more.Known fo 10 min read Python Interview Questions and Answers Python is the most used language in top companies such as Intel, IBM, NASA, Pixar, Netflix, Facebook, JP Morgan Chase, Spotify and many more because of its simplicity and powerful libraries. To crack their Online Assessment and Interview Rounds as a Python developer, we need to master important Pyth 15+ min read Python OOPs Concepts Object Oriented Programming is a fundamental concept in Python, empowering developers to build modular, maintainable, and scalable applications. By understanding the core OOP principles (classes, objects, inheritance, encapsulation, polymorphism, and abstraction), programmers can leverage the full p 11 min read Python Projects - Beginner to Advanced Python is one of the most popular programming languages due to its simplicity, versatility, and supportive community. Whether youâre a beginner eager to learn the basics or an experienced programmer looking to challenge your skills, there are countless Python projects to help you grow.Hereâs a list 10 min read Python Exercise with Practice Questions and Solutions Python Exercise for Beginner: Practice makes perfect in everything, and this is especially true when learning Python. If you're a beginner, regularly practicing Python exercises will build your confidence and sharpen your skills. To help you improve, try these Python exercises with solutions to test 9 min read Python Programs Practice with Python program examples is always a good choice to scale up your logical understanding and programming skills and this article will provide you with the best sets of Python code examples.The below Python section contains a wide collection of Python programming examples. These Python co 11 min read Python Introduction Python was created by Guido van Rossum in 1991 and further developed by the Python Software Foundation. It was designed with focus on code readability and its syntax allows us to express concepts in fewer lines of code.Key Features of PythonPythonâs simple and readable syntax makes it beginner-frien 3 min read Python Data Types Python Data types are the classification or categorization of data items. It represents the kind of value that tells what operations can be performed on a particular data. Since everything is an object in Python programming, Python data types are classes and variables are instances (objects) of thes 9 min read Input and Output in Python Understanding input and output operations is fundamental to Python programming. With the print() function, we can display output in various formats, while the input() function enables interaction with users by gathering input during program execution. Taking input in PythonPython input() function is 8 min read Enumerate() in Python enumerate() function adds a counter to each item in a list or other iterable. It turns the iterable into something we can loop through, where each item comes with its number (starting from 0 by default). We can also turn it into a list of (number, item) pairs using list().Let's look at a simple exam 3 min read Like