Open In App

Python - tensorflow.math.expm1()

Last Updated : 08 Jun, 2020
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks. 

expm1() is used to compute element wise exp(x)-1.

Syntax: tensorflow.math.expm1(   x, name)

Parameters:

  • x: It's the input tensor. Allowed dtypes are bfloat16, half, float32, float64, complex64, complex128.
  • name(optional): It defines the name for the operation.

Returns: It returns a tensor of same dtype as x.

Example 1:

Python3
# importing the library
import tensorflow as tf

# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)

# Printing the input tensor
print('Input: ', a)

# Calculating result
res = tf.math.expm1(x = a)

# Printing the result
print('Result: ', res)

Output:

Input:  tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64)
Result:  tf.Tensor([  1.71828183   6.3890561   19.08553692  53.59815003 147.4131591 ], shape=(5, ), dtype=float64)


Example 2: Visualization

Python3
# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt

# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)

# Calculating result
res = tf.math.expm1(x = a)

# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.math.expm1')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()

Output:


Practice Tags :

Similar Reads