Open In App

Python | SymPy Permutation.cyclic_form() method

Last Updated : 26 Aug, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
Permutation.cyclic_form() : cyclic_form() is a sympy Python library function that returns the cyclic notation from the canonical notation, by omitting the singletons.
Syntax : sympy.combinatorics.permutations.Permutation.cyclic_form() Return : cyclic notation from the canonical notation
Code #1 : cyclic_form() Example Python3 1=1
# Python code explaining
# SymPy.Permutation.cyclic_form()

# importing SymPy libraries
from sympy.combinatorics.partitions import Partition
from sympy.combinatorics.permutations import Permutation

# Using from sympy.combinatorics.permutations.Permutation.cyclic_form() method 

# creating Permutation
a = Permutation([2, 0, 3, 1, 5, 4])

b = Permutation([3, 1, 2, 5, 4, 0])


print ("Permutation a - cyclic_form form : ", a.cyclic_form)
print ("Permutation b - cyclic_form form : ", b.cyclic_form)
Output :
Permutation a - cyclic_form form : [[0, 2, 3, 1], [4, 5]] Permutation b - cyclic_form form : [[0, 3, 5]]
Code #2 : cyclic_form() Example - 2D Permutation Python3 1=1
# Python code explaining
# SymPy.Permutation.cyclic_form()

# importing SymPy libraries
from sympy.combinatorics.partitions import Partition
from sympy.combinatorics.permutations import Permutation

# Using from 
# sympy.combinatorics.permutations.Permutation.cyclic_form() method 

# creating Permutation
a = Permutation([[2, 4, 0], 
                 [3, 1, 2],
                 [1, 5, 6]])

# SELF COMMUTATING    
print ("Permutation a - cyclic_form form : ", a.cyclic_form)
Output :
Permutation a - cyclic_form form : [[0, 3, 5, 6, 1, 2, 4]]

Next Article
Article Tags :
Practice Tags :

Similar Reads