Python | sympy.integrate() using limits Last Updated : 12 Jun, 2019 Summarize Comments Improve Suggest changes Share Like Article Like Report With the help of sympy.integrate(expression, limit) method, we can find the integration of mathematical expressions using limits in the form of variables by using sympy.integrate(expression, limit) method. Syntax : sympy.integrate(expression, reference variable, limit) Return : Return integration of mathematical expression. Example #1 : In this example we can see that by using sympy.integrate(expression, limits) method, we can find the integration of mathematical expression using limits with variables. Here we use symbols() method also to declare a variable as symbol. Python3 1=1 # import sympy from sympy import * x, y = symbols('x y') gfg_exp = cos(x) print("Before Integration : {}".format(gfg_exp)) # Use sympy.integrate() method intr = integrate(gfg_exp, (x, -oo, oo)) print("After Integration : {}".format(intr)) Output : Before Integration : cos(x) After Integration : AccumBounds(-2, 2) Â Example #2 : Python3 1=1 # import sympy from sympy import * x, y = symbols('x y') gfg_exp = tan(x) print("Before Integration : {}".format(gfg_exp)) # Use sympy.integrate() method intr = integrate(gfg_exp, (x, -1, 1)) print("After Integration : {}".format(intr)) Output : Before Integration : tan(x) After Integration : 0 Comment More infoAdvertise with us Next Article Python | sympy.integrate() using limits J jitender_1998 Follow Improve Article Tags : Python SymPy Practice Tags : python Similar Reads Python | sympy.integrate() method With the help of sympy.integrate() method, we can find the integration of mathematical expressions in the form of variables by using sympy.integrate() method. Syntax : sympy.integrate(expression, reference variable) Return : Return integration of mathematical expression. Example #1 : In this example 1 min read Python | Scipy integrate.simps() method With the help of scipy.integrate.simps() method, we can get the integration of y(x) using samples along the axis and composite simpson's rule by using scipy.integrate.simps() method. Syntax : scipy.integrate.simps(y, x) Return : Return the integrated value of y(x) using samples. Example #1 : In this 1 min read Python | sympy.Integral() method With the help of sympy.Integral() method, we can create an unevaluated integral of a SymPy expression. It has the same syntax as integrate() method. To evaluate an unevaluated integral, use the doit() method. Syntax: Integral(expression, reference variable) Parameters: expression - A SymPy expressio 2 min read Python | sympy.Integer() method With the help of sympy.Integer() method, we can convert the floating point to integer values and this method very efficient in term of memory if we want to save integer value. Syntax : sympy.Integer() Return : Return integer value. Example #1 : In this example we can see that by using sympy.Integer( 1 min read Python | Scipy integrate.romb() method With the help of scipy.integrate.romb() method, we can get the romberg integration using samples of a function from limit a to b by using scipy.integrate.romb() method. Syntax : scipy.integrate.romb(y, dx, axis, show) Return : Return the romberg integration of a sample. Example #1 : In this example 1 min read Like