Open In App

Python | sympy.binomial() method

Last Updated : 07 Jul, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
With the help of sympy.binomial() method, we can find the number of ways to choose k items from a set of n distinct items. It is also often written as nCk, and is pronounced “n choose k”. \begin{equation} \binom{N}{k} \end{equation}
Syntax: binomial(N, K) Parameters: N - It denotes the number of items to choose from. K - It denotes the number of items to choose. Returns: Returns the number of ways to choose K items from a set of N distinct items
Example #1: Python3 1==
# import sympy 
from sympy import * 

N = 4
K = 2 
print("N = {}, K = {}".format(N, K))
 
# Use sympy.binomial() method 
comb = binomial(N, K)  
    
print("N choose K : {}".format(comb))  
Output:
N = 4, K = 2
N choose K : 6
Example #2: Python3 1==
# import sympy 
from sympy import * 

N, K = symbols('A B')

print("N = {}, K = {}".format(N, K))
 
# Use sympy.binomial() method 
comb = binomial(N, K)  
    
print("N choose K : {}".format(comb))  
Output:
N = A, K = B
N choose K : binomial(A, B)

Next Article
Article Tags :
Practice Tags :

Similar Reads