Open In App

Python - Power Log-Normal Distribution in Statistics

Last Updated : 10 Jan, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
scipy.stats.powerlognorm() is a power log-normal continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters :
q : lower and upper tail probability x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 size : [tuple of ints, optional] shape or random variates. moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : power log-normal continuous random variable
Code #1 : Creating power log-normal continuous random variable Python3 1==
# importing library

from scipy.stats import powerlognorm 
  
numargs = powerlognorm .numargs 
a, b = 4.32, 3.18
rv = powerlognorm (a, b) 
  
print ("RV : \n", rv) 
Output :
RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D8295B48
Code #2 : power log-normal continuous variates and probability distribution Python3 1==
import numpy as np 
quantile = np.arange (0.01, 1, 0.1) 

# Random Variates 
R = powerlognorm.rvs(a, b) 
print ("Random Variates : \n", R) 

# PDF 
R = powerlognorm.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 
Output :
Random Variates : 
 0.03729334807608579

Probability Distribution : 
 [0.00000000e+000 8.14360522e-126 7.81567440e-037 1.63561014e-018
 8.34970138e-012 1.30638655e-008 7.72704791e-007 9.42026992e-006
 4.87663742e-005 1.52259891e-004]
 
Code #3 : Graphical Representation. Python3 1==
import numpy as np 
import matplotlib.pyplot as plt 
   
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
   
plot = plt.plot(distribution, rv.pdf(distribution)) 
Output :
Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
 
Code #4 : Varying Positional Arguments Python3 1==
import matplotlib.pyplot as plt 
import numpy as np 
   
x = np.linspace(0, 5, 100) 
   
# Varying positional arguments 
y1 = powerlognorm .pdf(x, 1, 3, 5) 
y2 = powerlognorm .pdf(x, 1, 4, 4) 
plt.plot(x, y1, "*", x, y2, "r--") 
Output :

Next Article
Practice Tags :

Similar Reads