Python - Poisson Discrete Distribution in Statistics Last Updated : 10 Jan, 2020 Comments Improve Suggest changes Like Article Like Report scipy.stats.poisson() is a poisson discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : poisson discrete random variable Code #1 : Creating poisson discrete random variable Python3 1== # importing library from scipy.stats import poisson numargs = poisson .numargs a, b = 0.2, 0.8 rv = poisson (a, b) print ("RV : \n", rv) Output : RV : scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4D865848 Code #2 : poisson discrete variates and probability distribution Python3 1== import numpy as np quantile = np.arange (0.01, 1, 0.1) # Random Variates R = poisson .rvs(a, b, size = 10) print ("Random Variates : \n", R) # PDF x = np.linspace(poisson.ppf(0.01, a, b), poisson.ppf(0.99, a, b), 10) R = poisson.ppf(x, 1, 3) print ("\nProbability Distribution : \n", R) Output : Random Variates : [0 0 1 0 1 0 0 1 0 0] Probability Distribution : [ 5. nan nan nan nan nan nan nan nan nan] Code #3 : Graphical Representation. Python3 1== import numpy as np import matplotlib.pyplot as plt distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) print("Distribution : \n", distribution) plot = plt.plot(distribution, rv.ppf(distribution)) Output : Distribution : [0. 0.04081633 0.08163265 0.12244898 0.16326531 0.20408163 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959 0.48979592 0.53061224 0.57142857 0.6122449 0.65306122 0.69387755 0.73469388 0.7755102 0.81632653 0.85714286 0.89795918 0.93877551 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347 1.2244898 1.26530612 1.30612245 1.34693878 1.3877551 1.42857143 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735 1.95918367 2. ] Code #4 : Varying Positional Arguments Python3 1== import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 5, 100) # Varying positional arguments y1 = poisson.ppf(x, a, b) y2 = poisson.pmf(x, a, b) plt.plot(x, y1, "*", x, y2, "r--") Output : Comment More infoAdvertise with us Next Article Python - Uniform Discrete Distribution in Statistics M mathemagic Follow Improve Article Tags : Python Python-scipy Python scipy-stats-functions Practice Tags : python Similar Reads Python - Planck Discrete Distribution in Statistics scipy.stats.planck() is a Planck discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [optional]location parameter. Default = 0 2 min read Python - Zipf Discrete Distribution in Statistics scipy.stats.zipf() is a zipf discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [optional]location parameter. Default = 0 scal 2 min read Python - Logarithmic Discrete Distribution in Statistics scipy.stats.logser() is a Logarithmic (Log-Series, Series) discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [optional]locati 2 min read Python - Discrete Geometric Distribution in Statistics scipy.stats.geom() is a Geometric discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [optional]location parameter. Default = 0 2 min read Python - Uniform Discrete Distribution in Statistics scipy.stats.randint() is a uniform discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [optional]location parameter. Default = 2 min read Python - Skellam Discrete Distribution in Statistics scipy.stats.skellam() is a Skellam discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [optional]location parameter. Default = 2 min read Like