Python | Pandas Series.at_time() Last Updated : 17 Feb, 2019 Comments Improve Suggest changes Like Article Like Report Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Pandas Series.at_time() function is used to select values at particular time of day (e.g. 9:30AM) in the given series object. Syntax: Series.at_time(time, asof=False, axis=None) Parameter : time : datetime.time or string axis : {0 or ‘index’, 1 or ‘columns’}, default 0 Returns : values_at_time : same type as caller Example #1: Use Series.at_time() function to return the values at particular time of the day in the given series object. Python3 # importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([11, 21, 8, 18, 65, 18, 32, 10, 5, 32, None]) # Create the Index index_ = pd.date_range('2010-10-09 08:45', periods = 11, freq ='H') # set the index sr.index = index_ # Print the series print(sr) Output : Now we will use Series.at_time() function to return the values at particular time of the day in the given series object. Python3 1== # return values at particular time of the day result = sr.at_time(time = '13:45:00') # Print the result print(result) Output : As we can see in the output, the Series.at_time() function has successfully returned the value at the particular time of the day in the given series object. Example #2 : Use Series.at_time() function to return the values at particular time of the day in the given series object. Python3 # importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([11, 21, 8, 18, 65, 18, 32, 10, 5, 32, None]) # Create the Index # apply monthly frequency index_ = pd.date_range('2010-10-09 08:45', periods = 11, freq ='M') # set the index sr.index = index_ # Print the series print(sr) Output : Now we will use Series.at_time() function to return the values at particular time of the day in the given series object. Python3 1== # return values at particular time of the day result = sr.at_time(time = '08:45:00') # Print the result print(result) Output : As we can see in the output, the Series.at_time() function has successfully returned the value at the particular time of the day in the given series object. All of the values in the series object has been returned as they are having the time value equal to the passed time. Comment More infoAdvertise with us S Shubham__Ranjan Follow Improve Article Tags : Pandas Python-pandas Python pandas-series-methods AI-ML-DS With Python Explore Pandas Tutorial 6 min read IntroductionPandas Introduction 3 min read How to Install Pandas in Python? 5 min read How To Use Jupyter Notebook - An Ultimate Guide 5 min read Creating ObjectsCreating a Pandas DataFrame 2 min read Python Pandas Series 5 min read Creating a Pandas Series 3 min read Viewing DataPandas Dataframe/Series.head() method - Python 3 min read Pandas Dataframe/Series.tail() method - Python 3 min read Pandas DataFrame describe() Method 4 min read Selection & SlicingDealing with Rows and Columns in Pandas DataFrame 5 min read Pandas Extracting rows using .loc[] - Python 3 min read Extracting rows using Pandas .iloc[] in Python 7 min read Indexing and Selecting Data with Pandas 4 min read Boolean Indexing in Pandas 6 min read Python | Pandas DataFrame.ix[ ] 2 min read Python | Pandas Series.str.slice() 3 min read How to take column-slices of DataFrame in Pandas? 2 min read OperationsPython | Pandas.apply() 4 min read Apply function to every row in a Pandas DataFrame 3 min read Python | Pandas Series.apply() 3 min read Pandas dataframe.aggregate() | Python 2 min read Pandas DataFrame mean() Method 2 min read Python | Pandas Series.mean() 2 min read Python | Pandas dataframe.mad() 2 min read Python | Pandas Series.mad() to calculate Mean Absolute Deviation of a Series 2 min read Python | Pandas dataframe.sem() 3 min read Python | Pandas Series.value_counts() 2 min read Pandas Index.value_counts()-Python 3 min read Applying Lambda functions to Pandas Dataframe 6 min read Manipulating DataAdding New Column to Existing DataFrame in Pandas 6 min read Python | Delete rows/columns from DataFrame using Pandas.drop() 4 min read Python | Pandas DataFrame.truncate 3 min read Python | Pandas Series.truncate() 2 min read Iterating over rows and columns in Pandas DataFrame 4 min read Pandas Dataframe.sort_values() 2 min read Python | Pandas Dataframe.sort_values() | Set-2 3 min read How to add one row in existing Pandas DataFrame? 4 min read Grouping DataPandas GroupBy 4 min read Grouping Rows in pandas 2 min read Combining Multiple Columns in Pandas groupby with Dictionary 2 min read Merging, Joining, Concatenating and ComparingPython | Pandas Merging, Joining and Concatenating 8 min read Python | Pandas Series.str.cat() to concatenate string 3 min read Python - Pandas dataframe.append() 4 min read Python | Pandas Series.append() 4 min read Pandas Index.append() - Python 2 min read Python | Pandas Series.combine() 3 min read Add a row at top in pandas DataFrame 1 min read Python | Pandas str.join() to join string/list elements with passed delimiter 2 min read Join two text columns into a single column in Pandas 2 min read How To Compare Two Dataframes with Pandas compare? 5 min read How to compare the elements of the two Pandas Series? 3 min read Working with Date and TimePython | Working with date and time using Pandas 8 min read Python | Pandas Timestamp.timestamp 3 min read Python | Pandas Timestamp.now 3 min read Python | Pandas Timestamp.isoformat 2 min read Python | Pandas Timestamp.date 2 min read Python | Pandas Timestamp.replace 3 min read Pandas.to_datetime()-Python 3 min read Python | pandas.date_range() method 4 min read Like