Python | Pandas dataframe.get_dtype_counts() Last Updated : 19 Nov, 2018 Comments Improve Suggest changes Like Article Like Report Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier. Pandas dataframe.get_dtype_counts() function returns the counts of dtypes in the given object. It returns a pandas series object containing the counts of all data types present in the pandas object. It works with pandas series as well as dataframe. Syntax: DataFrame.get_dtype_counts() Returns : value : Series : Counts of datatypes For link to CSV file Used in Code, click here Example #1: Use get_dtype_counts() function to find the counts of datatype of a pandas dataframe object. Python3 # importing pandas as pd import pandas as pd # Creating the dataframe df = pd.read_csv("nba.csv") # Print the dataframe df Now apply the get_dtype_counts() function. Find out the frequency of occurrence of each data type in the dataframe. Python3 1== # applying get_dtype_counts() function df.get_dtype_counts() Output : Notice, the output is a pandas series object containing the count of each data types in the dataframe. Example #2: Use get_dtype_counts() function over a selected no. of columns of the data frame only. Python3 # importing pandas as pd import pandas as pd # Creating the dataframe df = pd.read_csv("nba.csv") # Applying get_dtype_counts() function to # find the data type counts in modified dataframe. df[["Salary", "Name", "Team"]].get_dtype_counts() Notice, the output is a pandas series object containing the count of each data types in the dataframe. We can verify all these results using this the dataframe.info() function. Python3 1== # Find out the types of all columns in the dataframe df.info() Output : Create Quiz Comment S Shubham__Ranjan Follow 0 Improve S Shubham__Ranjan Follow 0 Improve Article Tags : Technical Scripter Python Python pandas-dataFrame Pandas-DataFrame-Methods Explore Python FundamentalsPython Introduction 2 min read Input and Output in Python 4 min read Python Variables 4 min read Python Operators 4 min read Python Keywords 2 min read Python Data Types 8 min read Conditional Statements in Python 3 min read Loops in Python - For, While and Nested Loops 5 min read Python Functions 5 min read Recursion in Python 4 min read Python Lambda Functions 5 min read Python Data StructuresPython String 5 min read Python Lists 4 min read Python Tuples 4 min read Python Dictionary 3 min read Python Sets 6 min read Python Arrays 7 min read List Comprehension in Python 4 min read Advanced PythonPython OOP Concepts 11 min read Python Exception Handling 5 min read File Handling in Python 4 min read Python Database Tutorial 4 min read Python MongoDB Tutorial 2 min read Python MySQL 9 min read Python Packages 10 min read Python Modules 7 min read Python DSA Libraries 15 min read List of Python GUI Library and Packages 3 min read Data Science with PythonNumPy Tutorial - Python Library 3 min read Pandas Tutorial 4 min read Matplotlib Tutorial 5 min read Python Seaborn Tutorial 15+ min read StatsModel Library - Tutorial 3 min read Learning Model Building in Scikit-learn 6 min read TensorFlow Tutorial 2 min read PyTorch Tutorial 6 min read Web Development with PythonFlask Tutorial 8 min read Django Tutorial | Learn Django Framework 7 min read Django ORM - Inserting, Updating & Deleting Data 4 min read Templating With Jinja2 in Flask 6 min read Django Templates 5 min read Python | Build a REST API using Flask 3 min read Building a Simple API with Django REST Framework 3 min read Python PracticePython Quiz 1 min read Python Coding Practice 1 min read Python Interview Questions and Answers 15+ min read Like