Open In App

Python - Inverse Gaussian Distribution in Statistics

Last Updated : 10 Jan, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
scipy.stats.invgauss() is an inverted gauss continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters :
a : shape parameter c : special case of gengauss. Default equals to c = -1
Code #1 : Creating Inverse Gaussian continuous random variable Python3 1==
# importing library
from scipy.stats import invgauss   
   
numargs = invgauss.numargs 
[a, b] = [0.7, 0.4] * numargs 
rv = invgauss (a, b) 
   
print ("RV : \n", rv)  
Output :
RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x1a220d7bd0
Code #2 : Inverse Gaussian continuous variates and probability distribution Python3 1==
import numpy as np 
quantile = np.arange (0.01, 1) 
    
# Random Variates 
R = invgauss.ppf(0.01, a) 
print ("Random Variates : \n", R) 
   
# PDF 
R = invgauss.pdf(invgauss.ppf(0.01, a), a) 
print ("\nProbability Distribution : \n", R) 
Output :
Random Variates : 
 0.25801533159920903

Probability Distribution : 
 0.15984442779701688
Code #3 : Graphical Representation. Python3 1==
import numpy as np 
import matplotlib.pyplot as plt 
   
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
   
plot = plt.plot(distribution, rv.pdf(distribution)) 
Output :
Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]
Code #4 : Varying Positional Arguments Python3 1==
import matplotlib.pyplot as plt 
import numpy as np 
   
x = np.linspace(0, 5, 100) 
   
# Varying positional arguments 
y1 = invgauss .pdf(x, 1, 3) 
y2 = invgauss .pdf(x, 1, 4) 
plt.plot(x, y1, "*", x, y2, "r--") 
Output :

Next Article
Practice Tags :

Similar Reads