Python - Bernoulli Distribution in Statistics Last Updated : 31 Dec, 2019 Summarize Comments Improve Suggest changes Share Like Article Like Report scipy.stats.bernoulli() is a Bernoulli discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : Bernoulli discrete random variable Code #1 : Creating Bernoulli discrete random variable Python3 1== # importing library from scipy.stats import bernoulli numargs = bernoulli .numargs a, b = 0.2, 0.8 rv = bernoulli (a, b) print ("RV : \n", rv) Output : RV : scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C0FC108 Code #2 : Bernoulli discrete variates and probability distribution Python3 1== import numpy as np quantile = np.arange (0.01, 1, 0.1) # Random Variates R = bernoulli .rvs(a, b, size = 10) print ("Random Variates : \n", R) # PDF x = np.linspace(bernoulli.ppf(0.01, a, b), bernoulli.ppf(0.99, a, b), 10) R = bernoulli.ppf(x, 1, 3) print ("\nProbability Distribution : \n", R) Output : Random Variates : [0 0 0 0 0 0 0 0 0 1] Probability Distribution : [ 4. 4. nan nan nan nan nan nan nan nan] Code #3 : Graphical Representation. Python3 1== import numpy as np import matplotlib.pyplot as plt distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) print("Distribution : \n", distribution) plot = plt.plot(distribution, rv.ppf(distribution)) Output : Distribution : [0. 0.02040816 0.04081633 0.06122449 0.08163265 0.10204082 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878 0.36734694 0.3877551 0.40816327 0.42857143 0.44897959 0.46938776 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673 0.6122449 0.63265306 0.65306122 0.67346939 0.69387755 0.71428571 0.73469388 0.75510204 0.7755102 0.79591837 0.81632653 0.83673469 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367 0.97959184 1. ] Code #4 : Varying Positional Arguments Python3 1== import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 5, 100) # Varying positional arguments y1 = bernoulli.ppf(x, a, b) y2 = bernoulli.pmf(x, a, b) plt.plot(x, y1, "*", x, y2, "r--") Output : Comment More infoAdvertise with us Next Article Python - Normal Distribution in Statistics M mathemagic Follow Improve Article Tags : Python Python-scipy Python scipy-stats-functions Practice Tags : python Similar Reads Python - Boltzmann Distribution in Statistics scipy.stats.boltzmann() is a Boltzmann (Truncated Discrete Exponential) discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters : x : quantiles loc : [op 2 min read Python - Wald Distribution in Statistics scipy.stats.wald() is a Wald continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters : q : lower and upper tail probability x : quantiles loc : [opti 2 min read Python - Levy Distribution in Statistics scipy.stats.levy() is a levy continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters : q : lower and upper tail probability x : quantiles loc : [opti 2 min read Python - Normal Distribution in Statistics A probability distribution determines the probability of all the outcomes a random variable takes. The distribution can either be continuous or discrete distribution depending upon the values that a random variable takes. There are several types of probability distribution like Normal distribution, 6 min read Python - Moyal Distribution in Statistics scipy.stats.moyal() is a Moyal continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters : q : lower and upper tail probability x : quantiles loc : [op 2 min read Python - Pareto Distribution in Statistics scipy.stats.pareto() is a Pareto continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution. Parameters : q : lower and upper tail probability x : quantiles loc : [ 2 min read Like