Open In App

Python - Bernoulli Distribution in Statistics

Last Updated : 31 Dec, 2019
Comments
Improve
Suggest changes
Like Article
Like
Report
scipy.stats.bernoulli() is a Bernoulli discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution. Parameters :
x : quantiles loc : [optional]location parameter. Default = 0 scale : [optional]scale parameter. Default = 1 moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). Results : Bernoulli discrete random variable
Code #1 : Creating Bernoulli discrete random variable Python3 1==
# importing library

from scipy.stats import bernoulli 
  
numargs = bernoulli .numargs 
a, b = 0.2, 0.8
rv = bernoulli (a, b) 
  
print ("RV : \n", rv)  
Output :
RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C0FC108
Code #2 : Bernoulli discrete variates and probability distribution Python3 1==
import numpy as np 
quantile = np.arange (0.01, 1, 0.1) 

# Random Variates 
R = bernoulli .rvs(a, b, size = 10) 
print ("Random Variates : \n", R) 

# PDF 
x = np.linspace(bernoulli.ppf(0.01, a, b),
                bernoulli.ppf(0.99, a, b), 10)
R = bernoulli.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 
Output :
Random Variates : 
 [0 0 0 0 0 0 0 0 0 1]

Probability Distribution : 
 [ 4.  4. nan nan nan nan nan nan nan nan]

Code #3 : Graphical Representation. Python3 1==
import numpy as np 
import matplotlib.pyplot as plt 
   
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
   
plot = plt.plot(distribution, rv.ppf(distribution)) 
Output :
Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]
  
Code #4 : Varying Positional Arguments Python3 1==
import matplotlib.pyplot as plt 
import numpy as np 

x = np.linspace(0, 5, 100) 
   
# Varying positional arguments 
y1 = bernoulli.ppf(x, a, b) 
y2 = bernoulli.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--") 
Output :

Next Article
Practice Tags :

Similar Reads