Program for Octal to Decimal Conversion
Last Updated :
15 Sep, 2023
Given an octal number as input, we need to write a program to convert the given octal number into equivalent decimal number.
Examples:
Input : 67
Output: 55
Input : 512
Output: 330
Input : 123
Output: 83
The idea is to extract the digits of a given octal number starting from the rightmost digit and keep a variable dec_value. At the time of extracting digits from the octal number, multiply the digit with the proper base (Power of 8) and add it to the variable dec_value. In the end, the variable dec_value will store the required decimal number.
For Example:Â
If the octal number is 67.Â
dec_value = 6*(8^1) + 7*(8^0) = 55
The below diagram explains how to convert an octal number (123) to an equivalent decimal value:Â Â

Below is the implementation of the above idea.Â
C++
// C++ program to convert octal to decimal
#include <iostream>
using namespace std;
// Function to convert octal to decimal
int octalToDecimal(int n)
{
int num = n;
int dec_value = 0;
// Initializing base value to 1, i.e 8^0
int base = 1;
int temp = num;
while (temp) {
// Extracting last digit
int last_digit = temp % 10;
temp = temp / 10;
// Multiplying last digit with appropriate
// base value and adding it to dec_value
dec_value += last_digit * base;
base = base * 8;
}
return dec_value;
}
// Driver program to test above function
int main()
{
int num = 67;
cout << octalToDecimal(num) << endl;
}
Java
// Java program to convert octal to decimal
import java.io.*;
class GFG {
// Function to convert octal to decimal
static int octalToDecimal(int n)
{
int num = n;
int dec_value = 0;
// Initializing base value to 1, i.e 8^0
int base = 1;
int temp = num;
while (temp > 0) {
// Extracting last digit
int last_digit = temp % 10;
temp = temp / 10;
// Multiplying last digit with appropriate
// base value and adding it to dec_value
dec_value += last_digit * base;
base = base * 8;
}
return dec_value;
}
// driver program
public static void main(String[] args)
{
int num = 67;
System.out.println(octalToDecimal(num));
}
}
// This code is contributed
// by Pramod Kumar
Python3
# Python3 program to convert
# octal to decimal
# Function to convert
# octal to decimal
def octalToDecimal(n):
num = n
dec_value = 0
# Initializing base value
# to 1, i.e 8^0
base = 1
temp = num
while (temp):
# Extracting last digit
last_digit = temp % 10
temp = int(temp / 10)
# Multiplying last digit
# with appropriate base
# value and adding it
# to dec_value
dec_value += last_digit * base
base = base * 8
return dec_value
# Driver Code
num = 67
print(octalToDecimal(num))
# This code is contributed by mits
C#
// C# program to convert octal to
// decimal
using System;
class GFG {
// Function to convert octal
// to decimal
static int octalToDecimal(int n)
{
int num = n;
int dec_value = 0;
// Initializing base value
// to 1, i.e 8^0
int b_ase = 1;
int temp = num;
while (temp > 0) {
// Extracting last digit
int last_digit = temp % 10;
temp = temp / 10;
// Multiplying last digit
// with appropriate base
// value and adding it to
// dec_value
dec_value += last_digit * b_ase;
b_ase = b_ase * 8;
}
return dec_value;
}
// driver program
public static void Main()
{
int num = 67;
Console.WriteLine(octalToDecimal(num));
}
}
// This code is contributed by vt_m.
JavaScript
<script>
// JavaScript program to convert octal to decimal
// Function to convert octal to decimal
function octalToDecimal(n)
{
let num = n;
let dec_value = 0;
// Initializing base value to 1, i.e 8^0
let base = 1;
let temp = num;
while (temp) {
// Extracting last digit
let last_digit = temp % 10;
temp = Math.floor(temp / 10);
// Multiplying last digit with appropriate
// base value and adding it to dec_value
dec_value += last_digit * base;
base = base * 8;
}
return dec_value;
}
// Driver program to test above function
let num = 67;
document.write(octalToDecimal(num) + "<br>");
// This code is contributed by Surbhi Tyagi
</script>
PHP
<?php
// PHP program to convert octal to decimal
// Function to convert
// octal to decimal
function octalToDecimal($n)
{
$num = $n;
$dec_value = 0;
// Initializing base value
// to 1, i.e 8^0
$base = 1;
$temp = $num;
while ($temp)
{
// Extracting last digit
$last_digit = $temp % 10;
$temp = $temp / 10;
// Multiplying last digit
// with appropriate base
// value and adding it
// to dec_value
$dec_value += $last_digit * $base;
$base = $base * 8;
}
return $dec_value;
}
// Driver Code
$num = 67;
echo octalToDecimal($num);
// This code is contributed by anuj_67
?>
Time complexity: O(logN) where N is the given number
Auxiliary space: O(1)
Method: Using look up table method
The function octalToDecimal takes an integer n as input, which represents the octal number that needs to be converted to decimal. It initializes an unordered map lookup that maps each octal digit to its decimal equivalent.
It then uses a loop to extract each digit of the octal number from right to left, starting from the least significant digit. For each digit, it multiplies the decimal equivalent of the digit (retrieved from the lookup table) with the appropriate power of 8 (base) and adds it to the decimal variable. The base variable is updated after each iteration by multiplying it with 8. The loop continues until all digits have been processed.
Finally, the decimal variable is returned as the output of the function.
In the main function, an octal number octal_num is initialized and passed as an argument to the octalToDecimal function. The resulting decimal value is printed to the console.
C++
#include <iostream>
#include <unordered_map>
using namespace std;
int octalToDecimal(int n) {
unordered_map<int, int> lookup{
{0, 0}, {1, 1}, {2, 2}, {3, 3},
{4, 4}, {5, 5}, {6, 6}, {7, 7}
};
int decimal = 0;
int base = 1;
while (n > 0) {
int last_digit = n % 10;
decimal += lookup[last_digit] * base;
n /= 10;
base *= 8;
}
return decimal;
}
int main() {
int octal_num = 67;
cout << octalToDecimal(octal_num) << endl;
return 0;
}
Java
import java.util.HashMap;
public class GFG {
public static int octalToDecimal(int n) {
HashMap<Integer, Integer> lookup = new HashMap<>();
lookup.put(0, 0);
lookup.put(1, 1);
lookup.put(2, 2);
lookup.put(3, 3);
lookup.put(4, 4);
lookup.put(5, 5);
lookup.put(6, 6);
lookup.put(7, 7);
int decimal = 0;
int base = 1;
while (n > 0) {
int lastDigit = n % 10;
decimal += lookup.get(lastDigit) * base;
n /= 10;
base *= 8;
}
return decimal;
}
public static void main(String[] args) {
int octalNum = 67;
System.out.println(octalToDecimal(octalNum));
}
}
Python3
def octal_to_decimal(n):
# Define a dictionary to map octal digits to their decimal equivalents
lookup = {
0: 0, 1: 1, 2: 2, 3: 3,
4: 4, 5: 5, 6: 6, 7: 7
}
decimal = 0
base = 1
# Convert octal to decimal
while n > 0:
last_digit = n % 10 # Get the last digit of the octal number
decimal += lookup[last_digit] * base # Add the decimal equivalent to the result
n //= 10 # Remove the last digit from the octal number
base *= 8 # Move to the next octal place value (8^0, 8^1, 8^2, ...)
return decimal
def main():
octal_num = 67
print(octal_to_decimal(octal_num))
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
public class GFG
{
// Function to convert octal to decimal
public static int OctalToDecimal(int n)
{
// Lookup table for octal values
Dictionary<int, int> lookup = new Dictionary<int, int>()
{
{0, 0}, {1, 1}, {2, 2}, {3, 3},
{4, 4}, {5, 5}, {6, 6}, {7, 7}
};
int decimalNum = 0;
int baseVal = 1;
// Extracting digits from the octal number and converting to decimal
while (n > 0)
{
int lastDigit = n % 10; // Get the last digit of the octal number
decimalNum += lookup[lastDigit] * baseVal; // Convert the last digit to decimal and add to the result
n /= 10; // Remove the last digit from the octal number
baseVal *= 8; // Move to the next position in the decimal representation (base 8 -> base 10)
}
return decimalNum; // Return the decimal representation of the octal number
}
// Driver code
public static void Main(string[] args)
{
int octalNum = 67;
int decimalValue = OctalToDecimal(octalNum);
Console.WriteLine("Equivalent Decimal Value = " + decimalValue);
}
}
JavaScript
function octalToDecimal(n) {
let lookup = new Map([
[0, 0], [1, 1], [2, 2], [3, 3],
[4, 4], [5, 5], [6, 6], [7, 7]
]);
let decimal = 0;
let base = 1;
while (n > 0) {
let last_digit = n % 10;
decimal += lookup.get(last_digit) * base;
n = Math.floor(n/10);
base *= 8;
}
return decimal;
}
let octal_num = 67;
document.write(octalToDecimal(octal_num));
Time complexity: The time complexity of this algorithm is O(log N), where N is the octal number being converted to decimal. This is because we loop through each digit in the octal number once, and the number of digits in an N-digit octal number is log N.
Auxiliary space: The space complexity of this algorithm is O(1), as we only store a fixed-size lookup table and a few integer variables for the running sum and base value.
Using predefined function
C++
// C++ program to convert octal to decimal
#include <iostream>
using namespace std;
int OctToDec(string n)
{
return stoi(n, 0, 8);
}
int main()
{
string n = "67";
cout << OctToDec(n);
return 0;
}
// This code is contributed by phasing17
Java
// Java program to convert octal to decimal
import java.io.*;
class GFG {
public static int OctToDec(String n)
{
return Integer.parseInt(n, 8);
}
public static void main(String[] args)
{
String n = "67";
System.out.println(OctToDec(n));
}
}
Python3
# Python program to convert octal to decimal
def OctToDec(n):
return int(n, 8);
if __name__ == '__main__':
n = "67";
print(OctToDec(n));
# This code is contributed by 29AjayKumar
C#
using System;
public class GFG{
public static int OctToDec(String n)
{
return Convert.ToInt32(n, 8);
}
static public void Main (){
string n = "67";
Console.WriteLine(OctToDec(n));
}
}
// THIS CODE IS CONTRIBUTED BY RAG2127
JavaScript
<script>
// javascript program to convert octal to decimal
function OctToDec(n)
{
return parseInt(n, 8);
}
var n = "67";
document.write(OctToDec(n));
// This code contributed by Princi Singh
</script>
Â
Method 3: Using recursion
1. The method uses the fact that each digit of an octal number represents a power of 8, starting from the rightmost digit.Â
2. The method extracts the rightmost digit of the octal number by taking the remainder of the number divided by 10 (i.e., octal % 10) and adds it to the product of the remaining digits and the appropriate power of 8 (i.e., 8 * octal_to_decimal(octal // 10)).
3.This recursive step continues until the entire number has been converted to decimal.
C++
#include <iostream>
using namespace std;
int octal_to_decimal(int octal) {
if (octal == 0) {
return 0;
} else {
return (octal % 10) + 8 * octal_to_decimal(octal / 10);
}
}
int main() {
int octal = 67;
cout << octal_to_decimal(octal) << endl;
return 0;
}
Java
public class OctalToDecimal {
public static int octalToDecimal(int octal) {
if (octal == 0) {
return 0;
} else {
return (octal % 10) + 8 * octalToDecimal(octal / 10);
}
}
public static void main(String[] args) {
int octal = 67;
System.out.println(octalToDecimal(octal));
}
}
Python3
def octal_to_decimal(octal):
if octal == 0:
return 0
else:
return (octal % 10) + 8 * octal_to_decimal(octal // 10)
octal=67
print(octal_to_decimal(octal))
C#
using System;
public class Program
{
public static void Main()
{
int octal = 67;
int decimalNum = OctalToDecimal(octal);
Console.WriteLine(decimalNum);
}
public static int OctalToDecimal(int octal)
{
if (octal == 0)
{
return 0;
}
else
{
return (octal % 10) + 8 * OctalToDecimal(octal / 10);
}
}
}
JavaScript
// Javascript program for the above approach
function octal_to_decimal(octal) {
if (octal == 0) {
return 0;
} else {
return (octal % 10) + 8 * octal_to_decimal(Math.floor(octal / 10));
}
}
let octal = 67;
console.log(octal_to_decimal(octal));
// This code is contributed by rishabmalhdijo
The time complexity of this method is O(log n), where n is the given number
Auxiliary space: O(log n), where n is the given number
Â
Similar Reads
Ripple Counter in Digital Logic
Counters play a crucial role in digital logic circuits, enabling tasks such as clock frequency division and sequencing. This article explores the concept of ripple counters, a type of asynchronous counter, their operation, advantages, and disadvantages in digital logic design. What is a Counter?Coun
5 min read
Design counter for given sequence
A Counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal. Counters are used in digital electronics for counting purpose, they can count specific event happening in the circuit. For example, in
3 min read
Master-Slave JK Flip Flop
Prerequisite -Flip-flop types and their ConversionRace Around Condition In JK Flip-flop - For J-K flip-flop, if J=K=1, and if clk=1 for a long period of time, then Q output will toggle as long as CLK is high, which makes the output of the flip-flop unstable or uncertain. This problem is called race
4 min read
Asynchronous Sequential Circuits
An asynchronous sequential circuit does not have the clock signal; the transitions between different states occur due to the âchange of inputsâ. This makes them suitable for applications which involve low power input or when a clock signal may not be needed. In this article, we explain how these cir
6 min read
Shift Registers in Digital Logic
Pre-Requisite: Flip-FlopsFlip flops can be used to store a single bit of binary data (1 or 0). However, in order to store multiple bits of data, we need multiple flip-flops. N flip flops are to be connected in order to store n bits of data. A Register is a device that is used to store such informati
8 min read
Design 101 sequence detector (Mealy machine)
A sequence detector is a sequential state machine that takes an input string of bits and generates an output 1 whenever the target sequence has been detected. In a Mealy machine, output depends on the present state and the external input (x). Hence, in the diagram, the output is written outside the
5 min read
Amortized analysis for increment in counter
Amortized analysis refers to determining the time-averaged running time for a sequence (not an individual) operation. It is different from average case analysis because here, we don't assume that the data arranged in average (not very bad) fashion like we do for average case analysis for quick sort.
4 min read
Number System and Base Conversions
Electronic and digital systems use various number systems such as Decimal, Binary, Hexadecimal and Octal, which are essential in computing. Binary (base-2) is the foundation of digital systems.Hexadecimal (base-16) and Octal (base-8) are commonly used to simplify the representation of binary data. T
9 min read
Code Converters - BCD(8421) to/from Excess-3
Prerequisite - Number System and base conversions Excess-3 binary code is an unweighted self-complementary BCD code. Self-Complementary property means that the 1's complement of an excess-3 number is the excess-3 code of the 9's complement of the corresponding decimal number. This property is useful
5 min read
Code Converters - Binary to/from Gray Code
In this article, we will go through Code Converters - Binary to/from Gray Code, we will start our article by defining Code converters, Binary code and Gray code, and then we will go through the conversion of binary code to gray code and vice versa.Table Of ContentCode ConvertersBinary CodeGray CodeC
5 min read