Program for Mobius Function
Last Updated :
20 Jan, 2025
Mobius Function \mu(n) is a multiplicative function that is used in combinatorics. It has one of three possible values -1, 0 and 1.
For any positive integer n, \mu(n) = \begin{cases} 1, & \text{ if } n=1, \\ 0, & \text{ if } a^2 \mid n \text{ for some } a > 1 \text{ (i.e., } n \text{ has a squared prime factor)}, \\ (-1)^k, & \text { if } n \text{ is the product of } k \text{ distinct primes.} \end{cases}
Examples:
Input : 6
Output : 1
Solution: Prime Factors: 2 3.
Therefore p = 2, (-1)^p = 1
Input: 49
Output: 0
Solution: Prime Factors: 7 ( occurs twice).
Since the prime factor occurs twice answer
is 0.
Input: 3
Output: -1
Solution: Prime Factors: 3. Therefore p = 1,
(-1) ^ p =-1
Input : 78
Output : 1
Solution: Prime Factors: 3, 13. Therefore p = 2,
(-1)^p = 1
Method 1 (Simple)
We iterate through all numbers i smaller than or equal to N. For every number we check if it divides N. If yes, we check if it's also prime. If both conditions are satisfied, we check if its square also divides N. If yes, we return 0. If the square doesn't divide, we increment count of prime factors. Finally, we return 1 if there are an even number of prime factors and return -1 if there are odd number of prime factors.
C++
// CPP Program to evaluate Mobius Function
// M(N) = 1 if N = 1
// M(N) = 0 if any prime factor of N is contained twice
// M(N) = (-1)^(no of distinct prime factors)
#include<iostream>
using namespace std;
// Function to check if n is prime or not
bool isPrime(int n)
{
if (n < 2)
return false;
for (int i = 2; i * i <= n; i++)
if (n % i == 0)
return false;
return true;
}
int mobius(int N)
{
// Base Case
if (N == 1)
return 1;
// For a prime factor i check if i^2 is also
// a factor.
int p = 0;
for (int i = 1; i <= N; i++) {
if (N % i == 0 && isPrime(i)) {
// Check if N is divisible by i^2
if (N % (i * i) == 0)
return 0;
else
// i occurs only once, increase p
p++;
}
}
// All prime factors are contained only once
// Return 1 if p is even else -1
return (p % 2 != 0)? -1 : 1;
}
// Driver code
int main()
{
int N = 17;
cout << "Mobius Functions M(N) at N = " << N << " is: "
<< mobius(N) << endl;
cout << "Mobius Functions M(N) at N = " << 25 << " is: "
<< mobius(25) << endl;
cout << "Mobius Functions M(N) at N = " << 6 << " is: "
<< mobius(6) << endl;
}
Java
// Java program for mobius function
import java.io.*;
public class GFG {
// C# Program to evaluate Mobius
// Function: M(N) = 1 if N = 1
// M(N) = 0 if any prime factor
// of N is contained twice
// M(N) = (-1)^(no of distinct
// prime factors)
// Function to check if n is
// prime or not
static boolean isPrime(int n)
{
if (n < 2)
return false;
for (int i = 2; i * i <= n; i++)
if (n % i == 0)
return false;
return true;
}
static int mobius(int N)
{
// Base Case
if (N == 1)
return 1;
// For a prime factor i check if
// i^2 is also a factor.
int p = 0;
for (int i = 1; i <= N; i++) {
if (N % i == 0 && isPrime(i)) {
// Check if N is divisible by i^2
if (N % (i * i) == 0)
return 0;
else
// i occurs only once, increase p
p++;
}
}
// All prime factors are contained only
// once Return 1 if p is even else -1
return (p % 2 != 0) ? -1 : 1;
}
// Driver code
static public void main(String[] args)
{
int N = 17;
System.out.println("Mobius Functions M(N) at " +
" N = " + N + " is: " + mobius(N));
System.out.println("Mobius Functions M(N) at " +
" N = " + 25 + " is: " + mobius(25));
System.out.println("Mobius Functions M(N) at " +
" N = " + 6 + " is: " + mobius(6));
}
}
// This code is contributed by vt_m
Python3
# Python Program to
# evaluate Mobius def
# M(N) = 1 if N = 1
# M(N) = 0 if any
# prime factor of
# N is contained twice
# M(N) = (-1)^(no of
# distinct prime factors)
# def to check if
# n is prime or not
def isPrime(n) :
if (n < 2) :
return False
for i in range(2, n + 1) :
if (i * i <= n and n % i == 0) :
return False
return True
def mobius(N) :
# Base Case
if (N == 1) :
return 1
# For a prime factor i
# check if i^2 is also
# a factor.
p = 0
for i in range(1, N + 1) :
if (N % i == 0 and
isPrime(i)) :
# Check if N is
# divisible by i^2
if (N % (i * i) == 0) :
return 0
else :
# i occurs only once,
# increase p
p = p + 1
# All prime factors are
# contained only once
# Return 1 if p is even
# else -1
if(p % 2 != 0) :
return -1
else :
return 1
# Driver Code
N = 17
print ("Mobius defs M(N) at N = {} is: {}" .
format(N, mobius(N)),end = "\n")
print ("Mobius defs M(N) at N = {} is: {}" .
format(25, mobius(25)),end = "\n")
print ("Mobius defs M(N) at N = {} is: {}" .
format(6, mobius(6)),end = "\n")
# This code is contributed by
# Manish Shaw(manishshaw1)
C#
// C# Program to evaluate Mobius Function
using System;
public class GFG
{
// M(N) = 1 if N = 1
// M(N) = 0 if any prime factor
// of N is contained twice
// M(N) = (-1)^(no of distinct
// prime factors)
// Function to check if n is
// prime or not
static bool isPrime(int n)
{
if (n == 2)
return true;
if (n % 2 == 0)
return false;
for (int i = 3; i * i <= n / 2; i += 2)
if (n % i == 0)
return false;
return true;
}
static int mobius(int N)
{
// Base Case
if (N == 1)
return 1;
// For a prime factor i check
// if i^2 is also a factor.
int p = 0;
for (int i = 2; i <= N; i++)
{
if (N % i == 0 && isPrime(i)) {
// Check if N is divisible by i^2
if (N % (i * i) == 0)
return 0;
else
// i occurs only once, increase p
p++;
}
}
// All prime factors are contained only
// once Return 1 if p is even else -1
return (p % 2 != 0) ? -1 : 1;
}
// Driver code
static public void Main()
{
Console.WriteLine("Mobius Functions M(N) at " +
"N = " + 17 + " is: " + mobius(17));
Console.WriteLine("Mobius Functions M(N) at " +
"N = " + 25 + " is: " + mobius(25));
Console.WriteLine("Mobius Functions M(N) at " +
"N = " + 6 + " is: " + mobius(6));
}
}
// This code is contributed by vt_m
JavaScript
<script>
// JavaScript Program to evaluate Mobius
// Function: M(N) = 1 if N = 1
// M(N) = 0 if any prime factor
// of N is contained twice
// M(N) = (-1)^(no of distinct
// prime factors)
// Function to check if n is
// prime or not
function isPrime(n)
{
if (n < 2)
return false;
for (let i = 2; i * i <= n; i++)
if (n % i == 0)
return false;
return true;
}
function mobius(N)
{
// Base Case
if (N == 1)
return 1;
// For a prime factor i check if
// i^2 is also a factor.
let p = 0;
for (let i = 1; i <= N; i++) {
if (N % i == 0 && isPrime(i)) {
// Check if N is divisible by i^2
if (N % (i * i) == 0)
return 0;
else
// i occurs only once, increase p
p++;
}
}
// All prime factors are contained only
// once Return 1 if p is even else -1
return (p % 2 != 0) ? -1 : 1;
}
// Driver code
let N = 17;
document.write("Mobius Functions M(N) at " +
" N = " + N + " is: " + mobius(N) + "<br/>");
document.write("Mobius Functions M(N) at " +
" N = " + 25 + " is: " + mobius(25) + "<br/>");
document.write("Mobius Functions M(N) at " +
" N = " + 6 + " is: " + mobius(6) + "<br/>");
</script>
PHP
<?php
// PHP Program to evaluate Mobius Function
// M(N) = 1 if N = 1
// M(N) = 0 if any prime factor of
// N is contained twice
// M(N) = (-1)^(no of distinct prime factors)
// Function to check if n is prime or not
function isPrime($n)
{
if ($n < 2)
return false;
for ($i = 2; $i * $i <= $n; $i++)
if ($n % $i == 0)
return false;
return true;
}
function mobius($N)
{
// Base Case
if ($N == 1)
return 1;
// For a prime factor i
// check if i^2 is also
// a factor.
$p = 0;
for ($i = 1; $i <= $N; $i++) {
if ($N % $i == 0 && isPrime($i)) {
// Check if N is divisible by i^2
if ($N % ($i * $i) == 0)
return 0;
else
// i occurs only once, increase p
$p++;
}
}
// All prime factors are
// contained only once
// Return 1 if p is even
// else -1
return ($p % 2 != 0) ? -1 : 1;
}
// Driver Code
$N = 17;
echo "Mobius Functions M(N) at N = " ,$N , " is: "
, mobius($N) ,"\n";
echo "Mobius Functions M(N) at N = " ,25, " is: "
, mobius(25),"\n" ;
echo "Mobius Functions M(N) at N = " ,6, " is: "
, mobius(6) ;
// This code is contributed by nitin mittal.
?>
Output:
Mobius Functions M(N) at N = 17 is: -1
Mobius Functions M(N) at N = 25 is: 0
Mobius Functions M(N) at N = 6 is: 1
Time Complexity: O(n?n )
Auxiliary Space: O(1)
Method 2 (Efficient)
The idea is based on efficient program to print all prime factors of a given number. The interesting thing is, we do not need inner while loop here because if a number divides more than once, we can immediately return 0.
C++
// Program to print all prime factors
# include <bits/stdc++.h>
using namespace std;
// Returns value of mobius()
int mobius(int n)
{
int p = 0;
// Handling 2 separately
if (n%2 == 0)
{
n = n/2;
p++;
// If 2^2 also divides N
if (n % 2 == 0)
return 0;
}
// Check for all other prime factors
for (int i = 3; i <= sqrt(n); i = i+2)
{
// If i divides n
if (n%i == 0)
{
n = n/i;
p++;
// If i^2 also divides N
if (n % i == 0)
return 0;
}
}
return (p % 2 == 0)? -1 : 1;
}
// Driver code
int main()
{
int N = 17;
cout << "Mobius Functions M(N) at N = " << N << " is: "
<< mobius(N) << endl;
cout << "Mobius Functions M(N) at N = " << 25 << " is: "
<< mobius(25) << endl;
cout << "Mobius Functions M(N) at N = " << 6 << " is: "
<< mobius(6) << endl;
}
Java
// Java program to print all prime factors
import java.io.*;
class GFG {
// Returns value of mobius()
static int mobius(int n)
{
int p = 0;
// Handling 2 separately
if (n % 2 == 0)
{
n = n / 2;
p++;
// If 2^2 also divides N
if (n % 2 == 0)
return 0;
}
// Check for all other prime factors
for (int i = 3; i <= Math.sqrt(n);
i = i+2)
{
// If i divides n
if (n % i == 0)
{
n = n / i;
p++;
// If i^2 also divides N
if (n % i == 0)
return 0;
}
}
return (p % 2 == 0)? -1 : 1;
}
// Driver code
public static void main (String[] args)
{
int N = 17;
System.out.println( "Mobius Functions"
+ " M(N) at N = " + N + " is: "
+ mobius(N));
System.out.println ("Mobius Functions"
+ "M(N) at N = " + 25 + " is: "
+ mobius(25));
System.out.println( "Mobius Functions"
+ "M(N) at N = " + 6 + " is: "
+ mobius(6));
}
}
// This code is contributed by anuj_67.
Python3
# Python Program to evaluate
# Mobius def M(N) = 1 if N = 1
# M(N) = 0 if any prime factor
# of N is contained twice
# M(N) = (-1)^(no of distinct
# prime factors)
import math
# def to check if n
# is prime or not
def isPrime(n) :
if (n < 2) :
return False
for i in range(2, n + 1) :
if (n % i == 0) :
return False
i = i * i
return True
def mobius(n) :
p = 0
# Handling 2 separately
if (n % 2 == 0) :
n = int(n / 2)
p = p + 1
# If 2^2 also
# divides N
if (n % 2 == 0) :
return 0
# Check for all
# other prime factors
for i in range(3, int(math.sqrt(n)) + 1) :
# If i divides n
if (n % i == 0) :
n = int(n / i)
p = p + 1
# If i^2 also
# divides N
if (n % i == 0) :
return 0
i = i + 2
if(p % 2 == 0) :
return -1
else :
return 1
# Driver Code
N = 17
print ("Mobius defs M(N) at N = {} is: {}\n" .
format(N, mobius(N)));
print ("Mobius defs M(N) at N = 25 is: {}\n" .
format(mobius(25)));
print ("Mobius defs M(N) at N = 6 is: {}\n" .
format(mobius(6)));
# This code is contributed by
# Manish Shaw(manishshaw1)
C#
// C# program to print all prime factors
using System;
class GFG {
// Returns value of mobius()
static int mobius(int n)
{
int p = 0;
// Handling 2 separately
if (n % 2 == 0)
{
n = n / 2;
p++;
// If 2^2 also divides N
if (n % 2 == 0)
return 0;
}
// Check for all other prime factors
for (int i = 3; i <= Math.Sqrt(n);
i = i+2)
{
// If i divides n
if (n % i == 0)
{
n = n / i;
p++;
// If i^2 also divides N
if (n % i == 0)
return 0;
}
}
return (p % 2 == 0)? -1 : 1;
}
// Driver Code
public static void Main ()
{
int N = 17;
Console.WriteLine( "Mobius Functions"
+ " M(N) at N = " + N + " is: "
+ mobius(N));
Console.WriteLine("Mobius Functions"
+ "M(N) at N = " + 25 + " is: "
+ mobius(25));
Console.WriteLine( "Mobius Functions"
+ "M(N) at N = " + 6 + " is: "
+ mobius(6));
}
}
// This code is contributed by anuj_67.
JavaScript
<script>
// JavaScript program to print all prime factors
// Returns value of mobius()
function mobius(n)
{
let p = 0;
// Handling 2 separately
if (n % 2 == 0)
{
n = parseInt(n / 2, 10);
p++;
// If 2^2 also divides N
if (n % 2 == 0)
return 0;
}
// Check for all other prime factors
for (let i = 3; i <= Math.sqrt(n); i = i+2)
{
// If i divides n
if (n % i == 0)
{
n = parseInt(n / i, 10);
p++;
// If i^2 also divides N
if (n % i == 0)
return 0;
}
}
return (p % 2 == 0)? -1 : 1;
}
let N = 17;
document.write( "Mobius Functions"
+ " M(N) at N = " + N + " is: "
+ mobius(N) + "</br>");
document.write("Mobius Functions"
+ "M(N) at N = " + 25 + " is: "
+ mobius(25) + "</br>");
document.write( "Mobius Functions"
+ "M(N) at N = " + 6 + " is: "
+ mobius(6));
</script>
PHP
<?php
// PHP Program to print
// all prime factors
// Returns value of mobius()
function mobius( $n)
{
$p = 0;
// Handling 2 separately
if ($n % 2 == 0)
{
$n = $n / 2;
$p++;
// If 2^2 also divides N
if ($n % 2 == 0)
return 0;
}
// Check for all
// other prime factors
for ( $i = 3; $i <= sqrt($n); $i = $i + 2)
{
// If i divides n
if ($n % $i == 0)
{
$n = $n / $i;
$p++;
// If i^2 also divides N
if ($n % $i == 0)
return 0;
}
}
return ($p % 2 == 0)? -1 : 1;
}
// Driver code
$N = 17;
echo "Mobius Functions M(N) at N = ", $N, " is: "
, mobius($N),"\n" ;
echo "Mobius Functions M(N) at N = " , 25 , " is: "
, mobius(25),"\n";
echo "Mobius Functions M(N) at N = " , 6 , " is: "
, mobius(6) ;
// This code is contributed by anuj_67.
?>
Output:
Mobius Functions M(N) at N = 17 is: -1
Mobius Functions M(N) at N = 25 is: 0
Mobius Functions M(N) at N = 6 is: 1
Time Complexity: O(?n)
Auxiliary Space: O(1)
Please suggest if someone has a better solution which is more efficient in terms of space and time.
References
1) http://mathworld.wolfram.com/MobiusFunction.html
2) https://en.wikipedia.org/wiki/M%C3%B6bius_function
3) https://en.wikipedia.org/wiki/Completely_multiplicative_function
Similar Reads
DSA Tutorial - Learn Data Structures and Algorithms DSA (Data Structures and Algorithms) is the study of organizing data efficiently using data structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to solve problems effectively. Data structures manage how data is stored and accessed, while algorithms focus on
7 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
14 min read
SQL Commands | DDL, DQL, DML, DCL and TCL Commands SQL commands are crucial for managing databases effectively. These commands are divided into categories such as Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), Data Query Language (DQL), and Transaction Control Language (TCL). In this article, we will e
7 min read
Data Structures Tutorial Data structures are the fundamental building blocks of computer programming. They define how data is organized, stored, and manipulated within a program. Understanding data structures is very important for developing efficient and effective algorithms. What is Data Structure?A data structure is a st
2 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Breadth First Search or BFS for a Graph Given a undirected graph represented by an adjacency list adj, where each adj[i] represents the list of vertices connected to vertex i. Perform a Breadth First Search (BFS) traversal starting from vertex 0, visiting vertices from left to right according to the adjacency list, and return a list conta
15+ min read
Binary Search Algorithm - Iterative and Recursive Implementation Binary Search Algorithm is a searching algorithm used in a sorted array by repeatedly dividing the search interval in half. The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(log N). Binary Search AlgorithmConditions to apply Binary Searc
15 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Array Data Structure Guide In this article, we introduce array, implementation in different popular languages, its basic operations and commonly seen problems / interview questions. An array stores items (in case of C/C++ and Java Primitive Arrays) or their references (in case of Python, JS, Java Non-Primitive) at contiguous
4 min read