Open In App

Product of all the elements in an array divisible by a given number K

Last Updated : 05 Sep, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

Given an array containing N elements and a number K. The task is to find the product of all such elements of the array which are divisible by K.

Examples:  

Input : arr[] = {15, 16, 10, 9, 6, 7, 17}
        K = 3
Output : 810

Input : arr[] = {5, 3, 6, 8, 4, 1, 2, 9}
        K = 2
Output : 384 

The idea is to traverse the array and check the elements one by one. If an element is divisible by K then multiply that element's value with the product so far and continue this process while the end of the array is reached.

Below is the implementation of the above approach:  

C++
// C++ program to find Product of all the elements
// in an array divisible by a given number K

#include <iostream>
using namespace std;

// Function to find Product of all the elements
// in an array divisible by a given number K
int findProduct(int arr[], int n, int k)
{
    int prod = 1;

    // Traverse the array
    for (int i = 0; i < n; i++) {

        // If current element is divisible by k
        // multiply with product so far
        if (arr[i] % k == 0) {
            prod *= arr[i];
        }
    }

    // Return calculated product
    return prod;
}

// Driver code
int main()
{
    int arr[] = { 15, 16, 10, 9, 6, 7, 17 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;

    cout << findProduct(arr, n, k);

    return 0;
}
C
// C program to find Product of all the elements
// in an array divisible by a given number K
#include <stdio.h>

// Function to find Product of all the elements
// in an array divisible by a given number K
int findProduct(int arr[], int n, int k)
{
    int prod = 1;

    // Traverse the array
    for (int i = 0; i < n; i++) {

        // If current element is divisible by k
        // multiply with product so far
        if (arr[i] % k == 0) {
            prod *= arr[i];
        }
    }

    // Return calculated product
    return prod;
}

// Driver code
int main()
{
    int arr[] = { 15, 16, 10, 9, 6, 7, 17 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
    printf("%d",findProduct(arr, n, k));

    return 0;
}

// This code is contributed by kothavvsaakash.
Java
// Java program to find Product of all the elements
// in an array divisible by a given number K

import java.io.*;

class GFG {

// Function to find Product of all the elements
// in an array divisible by a given number K
static int findProduct(int arr[], int n, int k)
{
    int prod = 1;

    // Traverse the array
    for (int i = 0; i < n; i++) {

        // If current element is divisible by k
        // multiply with product so far
        if (arr[i] % k == 0) {
            prod *= arr[i];
        }
    }

    // Return calculated product
    return prod;
}

// Driver code
    public static void main (String[] args) {
        int arr[] = { 15, 16, 10, 9, 6, 7, 17 };
    int n = arr.length;
    int k = 3;

    System.out.println(findProduct(arr, n, k));
    }
}


// This code is contributed by inder_verma..
Python3
# Python3 program to find Product of all 
# the elements in an array divisible by
# a given number K

# Function to find Product of all the elements
# in an array divisible by a given number K
def findProduct(arr, n, k):

    prod = 1

    # Traverse the array
    for i in range(n):

        # If current element is divisible 
        # by k, multiply with product so far
        if (arr[i] % k == 0):
            prod *= arr[i]

    # Return calculated product
    return prod

# Driver code
if __name__ == "__main__":

    arr= [15, 16, 10, 9, 6, 7, 17 ]
    n = len(arr)
    k = 3

    print (findProduct(arr, n, k))

# This code is contributed by ita_c
C#
// C# program to find Product of all 
// the elements in an array divisible
// by a given number K
using System;

class GFG 
{

// Function to find Product of all 
// the elements in an array divisible
// by a given number K
static int findProduct(int []arr, int n, int k)
{
    int prod = 1;

    // Traverse the array
    for (int i = 0; i < n; i++) 
    {

        // If current element is divisible 
        // by k multiply with product so far
        if (arr[i] % k == 0) 
        {
            prod *= arr[i];
        }
    }

    // Return calculated product
    return prod;
}

// Driver code
public static void Main()
{
    int []arr = { 15, 16, 10, 9, 6, 7, 17 };
    int n = arr.Length;
    int k = 3;
    
    Console.WriteLine(findProduct(arr, n, k));
}
}

// This code is contributed by inder_verma
PHP
<?php
// PHP program to find Product of 
// all the elements in an array 
// divisible by a given number K 

// Function to find Product of 
// all the elements in an array 
// divisible by a given number K 
function findProduct(&$arr, $n, $k) 
{ 
    $prod = 1; 

    // Traverse the array 
    for ($i = 0; $i < $n; $i++) 
    { 

        // If current element is divisible  
        // by k multiply with product so far 
        if ($arr[$i] % $k == 0) 
        { 
            $prod *= $arr[$i]; 
        } 
    } 

    // Return calculated product 
    return $prod; 
} 

// Driver code 
$arr = array(15, 16, 10, 9, 6, 7, 17 ); 
$n = sizeof($arr); 
$k = 3; 

echo (findProduct($arr, $n, $k)); 

// This code is contributed
// by Shivi_Aggarwal
?>
JavaScript
<script>
// Function to find Product of all the elements
// in an array divisible by a given number K
function findProduct( arr, n,  k)
{
    var prod = 1;

    // Traverse the array
    for (var i = 0; i < n; i++) {

        // If current element is divisible by k
        // multiply with product so far
        if (arr[i] % k == 0) {
            prod *= arr[i];
        }
    }

    // Return calculated product
    return prod;
}

var arr = [15, 16, 10, 9, 6, 7, 17 ];
    

    document.write(findProduct(arr, 7, 3));



</script>

Output
810

Complexity Analysis:

  • Time Complexity: O(N), where N is the number of elements in the array.
    Auxiliary Space: O(1) 

Next Article

Similar Reads