Printing Maximum Sum Increasing Subsequence
Last Updated :
23 Apr, 2025
The Maximum Sum Increasing Subsequence problem is to find the maximum sum subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order.
Examples:
Input: [1, 101, 2, 3, 100, 4, 5]
Output: [1, 2, 3, 100]
Input: [3, 4, 5, 10]
Output: [3, 4, 5, 10]
Input: [10, 5, 4, 3]
Output: [10]
Input: [3, 2, 6, 4, 5, 1]
Output: [3, 4, 5]
In previous post, we have discussed the Maximum Sum Increasing Subsequence problem. However, the post only covered code related to finding maximum sum of increasing subsequence, but not to the construction of subsequence. In this post, we will discuss how to construct Maximum Sum Increasing Subsequence itself.
Let arr[0..n-1] be the input array. We define vector L such that L[i] is itself is a vector that stores Maximum Sum Increasing Subsequence of arr[0..i] that ends with arr[i]. Therefore for index i, L[i] can be recursively written as
L[0] = {arr[0]}
L[i] = {MaxSum(L[j])} + arr[i] where j < i and arr[j] < arr[i]
= arr[i], if there is no j such that arr[j] < arr[i]
For example, for array [3, 2, 6, 4, 5, 1],
L[0]: 3
L[1]: 2
L[2]: 3 6
L[3]: 3 4
L[4]: 3 4 5
L[5]: 1
Below is the implementation of the above idea –
C++
/* Dynamic Programming solution to construct
Maximum Sum Increasing Subsequence */
#include <iostream>
#include <vector>
using namespace std;
// Utility function to calculate sum of all
// vector elements
int findSum(vector<int> arr)
{
int sum = 0;
for (int i : arr)
sum += i;
return sum;
}
// Function to construct Maximum Sum Increasing
// Subsequence
void printMaxSumIS(int arr[], int n)
{
// L[i] - The Maximum Sum Increasing
// Subsequence that ends with arr[i]
vector<vector<int> > L(n);
// L[0] is equal to arr[0]
L[0].push_back(arr[0]);
// start from index 1
for (int i = 1; i < n; i++) {
// for every j less than i
for (int j = 0; j < i; j++) {
/* L[i] = {MaxSum(L[j])} + arr[i]
where j < i and arr[j] < arr[i] */
if ((arr[i] > arr[j])
&& (findSum(L[i]) < findSum(L[j])))
L[i] = L[j];
}
// L[i] ends with arr[i]
L[i].push_back(arr[i]);
// L[i] now stores Maximum Sum Increasing
// Subsequence of arr[0..i] that ends with
// arr[i]
}
vector<int> res = L[0];
// find max
for (vector<int> x : L)
if (findSum(x) > findSum(res))
res = x;
// max will contain result
for (int i : res)
cout << i << " ";
cout << endl;
}
// Driver Code
int main()
{
int arr[] = { 3, 2, 6, 4, 5, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
// construct and print Max Sum IS of arr
printMaxSumIS(arr, n);
return 0;
}
Java
/* Dynamic Programming solution to construct
Maximum Sum Increasing Subsequence */
import java.util.*;
class GFG {
// Utility function to calculate sum of all
// vector elements
static int findSum(Vector<Integer> arr)
{
int sum = 0;
for (int i : arr)
sum += i;
return sum;
}
// Function to construct Maximum Sum Increasing
// Subsequence
static void printMaxSumIs(int[] arr, int n)
{
// L[i] - The Maximum Sum Increasing
// Subsequence that ends with arr[i]
@SuppressWarnings("unchecked")
Vector<Integer>[] L = new Vector[n];
for (int i = 0; i < n; i++)
L[i] = new Vector<>();
// L[0] is equal to arr[0]
L[0].add(arr[0]);
// start from index 1
for (int i = 1; i < n; i++) {
// for every j less than i
for (int j = 0; j < i; j++) {
/*
* L[i] = {MaxSum(L[j])} + arr[i]
where j < i and arr[j] < arr[i]
*/
if ((arr[i] > arr[j])
&& (findSum(L[i]) < findSum(L[j]))) {
for (int k : L[j])
if (!L[i].contains(k))
L[i].add(k);
}
}
// L[i] ends with arr[i]
L[i].add(arr[i]);
// L[i] now stores Maximum Sum Increasing
// Subsequence of arr[0..i] that ends with
// arr[i]
}
Vector<Integer> res = new Vector<>(L[0]);
// res = L[0];
// find max
for (Vector<Integer> x : L)
if (findSum(x) > findSum(res))
res = x;
// max will contain result
for (int i : res)
System.out.print(i + " ");
System.out.println();
}
// Driver Code
public static void main(String[] args)
{
int[] arr = { 3, 2, 6, 4, 5, 1 };
int n = arr.length;
// construct and print Max Sum IS of arr
printMaxSumIs(arr, n);
}
}
// This code is contributed by
// sanjeev2552
Python
# Dynamic Programming solution to construct
# Maximum Sum Increasing Subsequence */
# Utility function to calculate sum of all
# vector elements
def findSum(arr):
summ = 0
for i in arr:
summ += i
return summ
# Function to construct Maximum Sum Increasing
# Subsequence
def printMaxSumIS(arr, n):
# L[i] - The Maximum Sum Increasing
# Subsequence that ends with arr[i]
L = [[] for i in range(n)]
# L[0] is equal to arr[0]
L[0].append(arr[0])
# start from index 1
for i in range(1, n):
# for every j less than i
for j in range(i):
# L[i] = {MaxSum(L[j])} + arr[i]
# where j < i and arr[j] < arr[i]
if ((arr[i] > arr[j]) and
(findSum(L[i]) < findSum(L[j]))):
for e in L[j]:
if e not in L[i]:
L[i].append(e)
# L[i] ends with arr[i]
L[i].append(arr[i])
# L[i] now stores Maximum Sum Increasing
# Subsequence of arr[0..i] that ends with
# arr[i]
res = L[0]
# find max
for x in L:
if (findSum(x) > findSum(res)):
res = x
# max will contain result
for i in res:
print(i, end=" ")
# Driver Code
arr = [3, 2, 6, 4, 5, 1]
n = len(arr)
# construct and prMax Sum IS of arr
printMaxSumIS(arr, n)
# This code is contributed by Mohit Kumar
C#
/* Dynamic Programming solution to construct
Maximum Sum Increasing Subsequence */
using System;
using System.Collections.Generic;
class GFG {
// Utility function to calculate sum of all
// vector elements
static int findSum(List<int> arr)
{
int sum = 0;
foreach(int i in arr) sum += i;
return sum;
}
// Function to construct Maximum Sum Increasing
// Subsequence
static void printMaxSumIs(int[] arr, int n)
{
// L[i] - The Maximum Sum Increasing
// Subsequence that ends with arr[i]
List<int>[] L = new List<int>[ n ];
for (int i = 0; i < n; i++)
L[i] = new List<int>();
// L[0] is equal to arr[0]
L[0].Add(arr[0]);
// start from index 1
for (int i = 1; i < n; i++) {
// for every j less than i
for (int j = 0; j < i; j++) {
/*
* L[i] = {MaxSum(L[j])} + arr[i]
where j < i and arr[j] < arr[i]
*/
if ((arr[i] > arr[j])
&& (findSum(L[i]) < findSum(L[j]))) {
foreach(int k in
L[j]) if (!L[i].Contains(k))
L[i]
.Add(k);
}
}
// L[i] ends with arr[i]
L[i].Add(arr[i]);
// L[i] now stores Maximum Sum Increasing
// Subsequence of arr[0..i] that ends with
// arr[i]
}
List<int> res = new List<int>(L[0]);
// res = L[0];
// find max
foreach(List<int> x in L) if (findSum(x)
> findSum(res)) res
= x;
// max will contain result
foreach(int i in res) Console.Write(i + " ");
Console.WriteLine();
}
// Driver Code
public static void Main(String[] args)
{
int[] arr = { 3, 2, 6, 4, 5, 1 };
int n = arr.Length;
// construct and print Max Sum IS of arr
printMaxSumIs(arr, n);
}
}
// This code is contributed by PrinciRaj1992
JavaScript
<script>
/* Dynamic Programming solution to construct
Maximum Sum Increasing Subsequence */
// Utility function to calculate sum of all
// vector elements
function findSum(arr)
{
let sum = 0;
for (let i=0;i<arr.length;i++)
sum += arr[i];
return sum;
}
// Function to construct Maximum Sum Increasing
// Subsequence
function printMaxSumIs(arr,n)
{
// L[i] - The Maximum Sum Increasing
// Subsequence that ends with arr[i]
let L = new Array(n);
for (let i = 0; i < n; i++)
L[i] = [];
// L[0] is equal to arr[0]
L[0].push(arr[0]);
// start from index 1
for (let i = 1; i < n; i++) {
// for every j less than i
for (let j = 0; j < i; j++) {
/*
* L[i] = {MaxSum(L[j])} + arr[i]
where j < i and arr[j] < arr[i]
*/
if ((arr[i] > arr[j])
&& (findSum(L[i]) < findSum(L[j])))
{
for (let k=0;k<L[j].length;k++)
if (!L[i].includes(L[j][k]))
L[i].push(L[j][k]);
}
}
// L[i] ends with arr[i]
L[i].push(arr[i]);
// L[i] now stores Maximum Sum Increasing
// Subsequence of arr[0..i] that ends with
// arr[i]
}
let res = L[0];
// res = L[0];
// find max
for (let x=0;x<L.length;x++)
if (findSum(L[x]) > findSum(res))
res = L[x];
// max will contain result
for (let i=0;i<res.length;i++)
document.write(res[i] + " ");
document.write("<br>");
}
// Driver Code
let arr=[3, 2, 6, 4, 5, 1];
let n = arr.length;
// construct and print Max Sum IS of arr
printMaxSumIs(arr, n);
// This code is contributed by unknown2108
</script>
We can optimize the above DP solution by removing findSum() function. Instead, we can maintain another vector/array to store sum of maximum sum increasing subsequence that ends with arr[i].
Time complexity of above Dynamic Programming solution is O(n2).
Auxiliary space used by the program is O(n2).
Approach 2: (Using Dynamic Programming Using O(N) space
The above approach covered how to construct a Maximum Sum Increasing Subsequence in O(N2) time and O(N2) space. In this approach, we will optimize the Space complexity and construct the Maximum Sum Increasing Subsequence in O(N2) time and O(N) space.
- Let arr[0..n-1] be the input array.
- We define a vector of pairs L such that L[i] first stores the Maximum Sum Increasing Subsequence of arr[0..i] that ends with arr[i] and L[i].second stores the index of the previous element used for generating the sum.
- As the first element does not have any previous element hence its index would be -1 in L[0].
For example,
array = [3, 2, 6, 4, 5, 1]
L[0]: {3, -1}
L[1]: {2, 1}
L[2]: {9, 0}
L[3]: {7, 0}
L[4]: {12, 3}
L[5]: {1, 5}
As we can see above, the value of the Maximum Sum Increasing Subsequence is 12. To construct the actual Subsequence we will use the index stored in L[i].second. The steps to construct the Subsequence is shown below:
- In a vector result, store the value of the element where the Maximum Sum Increasing Subsequence was found (i.e at currIndex = 4). So in the result vector, we will add arr[currIndex].
- Update the currIndex to L[currIndex].second and repeat step 1 until currIndex is not -1 or it does not changes (i.e currIndex == previousIndex).
- Display the elements of the result vector in reverse order.
Below is the implementation of the above idea :
C++14
/* Dynamic Programming solution to construct
Maximum Sum Increasing Subsequence */
#include <bits/stdc++.h>
using namespace std;
// Function to construct and print the Maximum Sum
// Increasing Subsequence
void constructMaxSumIS(vector<int> arr, int n)
{
// L[i] stores the value of Maximum Sum Increasing
// Subsequence that ends with arr[i] and the index of
// previous element used to construct the Subsequence
vector<pair<int, int> > L(n);
int index = 0;
for (int i : arr) {
L[index] = { i, index };
index++;
}
// Set L[0].second equal to -1
L[0].second = -1;
// start from index 1
for (int i = 1; i < n; i++) {
// for every j less than i
for (int j = 0; j < i; j++) {
if (arr[i] > arr[j]
and L[i].first < arr[i] + L[j].first) {
L[i].first = arr[i] + L[j].first;
L[i].second = j;
}
}
}
int maxi = INT_MIN, currIndex, track = 0;
for (auto p : L) {
if (p.first > maxi) {
maxi = p.first;
currIndex = track;
}
track++;
}
// Stores the final Subsequence
vector<int> result;
// Index of previous element
// used to construct the Subsequence
int prevoiusIndex;
while (currIndex >= 0) {
result.push_back(arr[currIndex]);
prevoiusIndex = L[currIndex].second;
if (currIndex == prevoiusIndex)
break;
currIndex = prevoiusIndex;
}
for (int i = result.size() - 1; i >= 0; i--)
cout << result[i] << " ";
}
// Driver Code
int main()
{
vector<int> arr = { 1, 101, 2, 3, 100, 4, 5 };
int n = arr.size();
// Function call
constructMaxSumIS(arr, n);
return 0;
}
Java
// Dynamic Programming solution to construct
// Maximum Sum Increasing Subsequence
import java.util.*;
import java.awt.Point;
class GFG{
// Function to construct and print the Maximum Sum
// Increasing Subsequence
static void constructMaxSumIS(List<Integer> arr, int n)
{
// L.get(i) stores the value of Maximum Sum Increasing
// Subsequence that ends with arr.get(i) and the index of
// previous element used to construct the Subsequence
List<Point> L = new ArrayList<Point>();
int index = 0;
for(int i : arr)
{
L.add(new Point(i, index));
index++;
}
// Set L[0].second equal to -1
L.set(0, new Point(L.get(0).x, -1));
// Start from index 1
for(int i = 1; i < n; i++)
{
// For every j less than i
for(int j = 0; j < i; j++)
{
if (arr.get(i) > arr.get(j) &&
L.get(i).x < arr.get(i) +
L.get(j).x)
{
L.set(i, new Point(arr.get(i) +
L.get(j).x, j));
}
}
}
int maxi = -100000000, currIndex = 0, track = 0;
for(Point p : L)
{
if (p.x > maxi)
{
maxi = p.x;
currIndex = track;
}
track++;
}
// Stores the final Subsequence
List<Integer> result = new ArrayList<Integer>();
// Index of previous element
// used to construct the Subsequence
int prevoiusIndex;
while (currIndex >= 0)
{
result.add(arr.get(currIndex));
prevoiusIndex = L.get(currIndex).y;
if (currIndex == prevoiusIndex)
break;
currIndex = prevoiusIndex;
}
for(int i = result.size() - 1; i >= 0; i--)
System.out.print(result.get(i) + " ");
}
// Driver Code
public static void main(String []s)
{
List<Integer> arr = new ArrayList<Integer>();
arr.add(1);
arr.add(101);
arr.add(2);
arr.add(3);
arr.add(100);
arr.add(4);
arr.add(5);
int n = arr.size();
// Function call
constructMaxSumIS(arr, n);
}
}
// This code is contributed by rutvik_56
Python
# Dynamic Programming solution to construct
# Maximum Sum Increasing Subsequence
import sys
# Function to construct and print the Maximum Sum
# Increasing Subsequence
def constructMaxSumIS(arr, n) :
# L[i] stores the value of Maximum Sum Increasing
# Subsequence that ends with arr[i] and the index of
# previous element used to construct the Subsequence
L = []
index = 0
for i in arr :
L.append([i, index])
index += 1
# Set L[0].second equal to -1
L[0][1] = -1
# start from index 1
for i in range(1, n) :
# for every j less than i
for j in range(i) :
if (arr[i] > arr[j] and L[i][0] < arr[i] + L[j][0]) :
L[i][0] = arr[i] + L[j][0]
L[i][1] = j
maxi, currIndex, track = -sys.maxsize, 0, 0
for p in L :
if (p[0] > maxi) :
maxi = p[0]
currIndex = track
track += 1
# Stores the final Subsequence
result = []
while (currIndex >= 0) :
result.append(arr[currIndex])
prevoiusIndex = L[currIndex][1]
if (currIndex == prevoiusIndex) :
break
currIndex = prevoiusIndex
for i in range(len(result) - 1, -1, -1) :
print(result[i] , end = " ")
arr = [ 1, 101, 2, 3, 100, 4, 5 ]
n = len(arr)
# Function call
constructMaxSumIS(arr, n)
# This code is contributed by divyeshrabadiya07
C#
/* Dynamic Programming solution to construct
Maximum Sum Increasing Subsequence */
using System;
using System.Collections.Generic;
class GFG
{
// Function to construct and print the Maximum Sum
// Increasing Subsequence
static void constructMaxSumIS(List<int> arr, int n)
{
// L[i] stores the value of Maximum Sum Increasing
// Subsequence that ends with arr[i] and the index of
// previous element used to construct the Subsequence
List<Tuple<int, int>> L = new List<Tuple<int, int>>();
int index = 0;
foreach(int i in arr) {
L.Add(new Tuple<int, int>(i, index));
index++;
}
// Set L[0].second equal to -1
L[0] = new Tuple<int, int>(L[0].Item1, -1);
// start from index 1
for (int i = 1; i < n; i++)
{
// for every j less than i
for (int j = 0; j < i; j++)
{
if (arr[i] > arr[j] &&
L[i].Item1 < arr[i] +
L[j].Item1)
{
L[i] = new Tuple<int,
int>(arr[i] + L[j].Item1, j);
}
}
}
int maxi = Int32.MinValue,
currIndex = 0, track = 0;
foreach(Tuple<int, int> p in L)
{
if (p.Item1 > maxi)
{
maxi = p.Item1;
currIndex = track;
}
track++;
}
// Stores the final Subsequence
List<int> result = new List<int>();
// Index of previous element
// used to construct the Subsequence
int prevoiusIndex;
while (currIndex >= 0)
{
result.Add(arr[currIndex]);
prevoiusIndex = L[currIndex].Item2;
if (currIndex == prevoiusIndex)
break;
currIndex = prevoiusIndex;
}
for (int i = result.Count - 1; i >= 0; i--)
Console.Write(result[i] + " ");
}
static void Main()
{
List<int> arr = new List<int>(new
int[] { 1, 101, 2, 3, 100, 4, 5 });
int n = arr.Count;
// Function call
constructMaxSumIS(arr, n);
}
}
// This code is contributed by divyesh072019
JavaScript
<script>
// Dynamic Programming solution to construct
// Maximum Sum Increasing Subsequence
// Function to construct and print the Maximum Sum
// Increasing Subsequence
function constructMaxSumIS(arr, n){
// L[i] stores the value of Maximum Sum Increasing
// Subsequence that ends with arr[i] and the index of
// previous element used to construct the Subsequence
let L = []
let index = 0
for(let i of arr){
L.push([i, index])
index += 1
}
// Set L[0].second equal to -1
L[0][1] = -1
// start from index 1
for(let i=1;i<n;i++){
// for every j less than i
for(let j=0;j<i;j++){
if (arr[i] > arr[j] && L[i][0] < arr[i] + L[j][0]){
L[i][0] = arr[i] + L[j][0]
L[i][1] = j
}
}
}
let maxi = Number.MIN_VALUE, currIndex = 0, track = 0
for(let p of L){
if (p[0] > maxi){
maxi = p[0]
currIndex = track
}
track += 1
}
// Stores the final Subsequence
let result = []
while (currIndex >= 0){
result.push(arr[currIndex])
let prevoiusIndex = L[currIndex][1]
if (currIndex == prevoiusIndex)
break
currIndex = prevoiusIndex
}
for(let i=result.length - 1;i>=0;i--)
document.write(result[i] ," ")
}
let arr = [ 1, 101, 2, 3, 100, 4, 5 ]
let n = arr.length
// Function call
constructMaxSumIS(arr, n)
// This code is contributed by shinjanpatra
</script>
Time Complexity: O(N2)
Space Complexity: O(N)
Similar Reads
Maximum Sum Decreasing Subsequence
Given an array of N positive integers. The task is to find the sum of the maximum sum decreasing subsequence(MSDS) of the given array such that the integers in the subsequence are sorted in decreasing order. Examples: Input: arr[] = {5, 4, 100, 3, 2, 101, 1} Output: 106 100 + 3 + 2 + 1 = 106 Input:
7 min read
Maximum Sum Increasing Subsequence | DP-14
Given an array arr[] of n positive integers. The task is to find the sum of the maximum sum subsequence of the given array such that the integers in the subsequence are sorted in strictly increasing order. Examples: Input: arr[] = [1, 101, 2, 3, 100]Output: 106Explanation: The maximum sum of a incre
15+ min read
Printing Longest Increasing Subsequence (LIS)
The Longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order. Here we need to print a LIS as well. In case there are multiple LIS (as shown in the example 2 below), we ne
13 min read
POTD Solutions | 23 Octâ 23 | Maximum Sum Increasing Subsequence
View all POTD Solutions Welcome to the daily solutions of our PROBLEM OF THE DAY (POTD). We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of Dynamic Programming but will also help you build up pro
4 min read
Maximum sum alternating subsequence
Given an array, the task is to find sum of maximum sum alternating subsequence starting with first element. Here alternating sequence means first decreasing, then increasing, then decreasing, ... For example 10, 5, 14, 3 is an alternating sequence. Note that the reverse type of sequence (increasing
13 min read
Minimum number of increasing subsequences
Given an array of integers of size N, you have to divide it into the minimum number of "strictly increasing subsequences" For example: let the sequence be {1, 3, 2, 4}, then the answer would be 2. In this case, the first increasing sequence would be {1, 3, 4} and the second would be {2}.Examples: In
10 min read
Maximum even sum subsequence
Given a array of n positive and negative integers, find the subsequence with the maximum even sum and display that even sum. Examples: Input: arr[] = {-2, 2, -3, 1, 3} Output: 6 Explanation: The longest subsequence with even sum is 2, 1 and 3. Input: arr[] = {-2, 2, -3, 4, 5} Output: 8 Explanation:
6 min read
Maximum Sum Subsequence of length k
Given an array sequence [A1, A2 ...An], the task is to find the maximum possible sum of increasing subsequence S of length k such that S1<=S2<=S3.........<=Sk. Examples: Input : n = 8 k = 3 A=[8 5 9 10 5 6 21 8] Output : 40 Possible Increasing subsequence of Length 3 with maximum possible s
11 min read
Find heaviest increasing Subsequence with maximum sum in a String
Given a string s and an array arr[] representing the weights of each character in the string, the task is to find the heaviest increasing subsequence with the maximum sum and return that subsequence. Examples: Input: s = "acbde", arr[] = {2, 4, 3, 5, 1}Output: acdExplanation: The heaviest increasing
8 min read
Maximum Sum Subsequence
Given an array arr[] of size N, the task is to find the maximum sum non-empty subsequence present in the given array. Examples: Input: arr[] = { 2, 3, 7, 1, 9 } Output: 22 Explanation: Sum of the subsequence { arr[0], arr[1], arr[2], arr[3], arr[4] } is equal to 22, which is the maximum possible sum
5 min read