Print all subsets of given size of a set
Last Updated :
23 Apr, 2025
Generate all possible subsets of size r of the given array with distinct elements.
Examples:
Input : arr[] = {1, 2, 3, 4}
r = 2
Output : 1 2
1 3
1 4
2 3
2 4
3 4
Input : arr[] = {10, 20, 30, 40, 50}
r = 3
Output : 10 20 30
10 20 40
10 20 50
10 30 40
10 30 50
10 40 50
20 30 40
20 30 50
20 40 50
30 40 50
This problem is the same Print all possible combinations of r elements in a given array of size n.
The idea here is similar to Subset Sum Problem. We, one by one, consider every element of the input array, and recur for two cases:
- The element is included in the current combination (We put the element in data[] and increase the next available index in data[])
- The element is excluded in the current combination (We do not put the element in and do not change the index)
When the number of elements in data[] becomes equal to r (size of a combination), we print it.
This method is mainly based on Pascal’s Identity, i.e. ncr = n-1cr + n-1cr-1
Implementation:
C++
// C++ Program to print all combination of size r in
// an array of size n
#include <iostream>
using namespace std;
void combinationUtil(int arr[], int n, int r,
int index, int data[], int i);
// The main function that prints all combinations of
// size r in arr[] of size n. This function mainly
// uses combinationUtil()
void printCombination(int arr[], int n, int r)
{
// A temporary array to store all combination
// one by one
int data[r];
// Print all combination using temporary array 'data[]'
combinationUtil(arr, n, r, 0, data, 0);
}
/* arr[] ---> Input Array
n ---> Size of input array
r ---> Size of a combination to be printed
index ---> Current index in data[]
data[] ---> Temporary array to store current combination
i ---> index of current element in arr[] */
void combinationUtil(int arr[], int n, int r, int index,
int data[], int i)
{
// Current combination is ready, print it
if (index == r) {
for (int j = 0; j < r; j++)
cout <<" "<< data[j];
cout <<"\n";
return;
}
// When no more elements are there to put in data[]
if (i >= n)
return;
// current is included, put next at next location
data[index] = arr[i];
combinationUtil(arr, n, r, index + 1, data, i + 1);
// current is excluded, replace it with next
// (Note that i+1 is passed, but index is not
// changed)
combinationUtil(arr, n, r, index, data, i + 1);
}
// Driver program to test above functions
int main()
{
int arr[] = { 10, 20, 30, 40, 50 };
int r = 3;
int n = sizeof(arr) / sizeof(arr[0]);
printCombination(arr, n, r);
return 0;
}
// This code is contributed by shivanisinghss2110
C
// C++ Program to print all combination of size r in
// an array of size n
#include <stdio.h>
void combinationUtil(int arr[], int n, int r,
int index, int data[], int i);
// The main function that prints all combinations of
// size r in arr[] of size n. This function mainly
// uses combinationUtil()
void printCombination(int arr[], int n, int r)
{
// A temporary array to store all combination
// one by one
int data[r];
// Print all combination using temporary array 'data[]'
combinationUtil(arr, n, r, 0, data, 0);
}
/* arr[] ---> Input Array
n ---> Size of input array
r ---> Size of a combination to be printed
index ---> Current index in data[]
data[] ---> Temporary array to store current combination
i ---> index of current element in arr[] */
void combinationUtil(int arr[], int n, int r, int index,
int data[], int i)
{
// Current combination is ready, print it
if (index == r) {
for (int j = 0; j < r; j++)
printf("%d ", data[j]);
printf("\n");
return;
}
// When no more elements are there to put in data[]
if (i >= n)
return;
// current is included, put next at next location
data[index] = arr[i];
combinationUtil(arr, n, r, index + 1, data, i + 1);
// current is excluded, replace it with next
// (Note that i+1 is passed, but index is not
// changed)
combinationUtil(arr, n, r, index, data, i + 1);
}
// Driver program to test above functions
int main()
{
int arr[] = { 10, 20, 30, 40, 50 };
int r = 3;
int n = sizeof(arr) / sizeof(arr[0]);
printCombination(arr, n, r);
return 0;
}
Java
// Java program to print all combination of size
// r in an array of size n
import java.io.*;
class Permutation {
/* arr[] ---> Input Array
data[] ---> Temporary array to store current combination
start & end ---> Starting and Ending indexes in arr[]
index ---> Current index in data[]
r ---> Size of a combination to be printed */
static void combinationUtil(int arr[], int n, int r,
int index, int data[], int i)
{
// Current combination is ready to be printed,
// print it
if (index == r) {
for (int j = 0; j < r; j++)
System.out.print(data[j] + " ");
System.out.println("");
return;
}
// When no more elements are there to put in data[]
if (i >= n)
return;
// current is included, put next at next
// location
data[index] = arr[i];
combinationUtil(arr, n, r, index + 1,
data, i + 1);
// current is excluded, replace it with
// next (Note that i+1 is passed, but
// index is not changed)
combinationUtil(arr, n, r, index, data, i + 1);
}
// The main function that prints all combinations
// of size r in arr[] of size n. This function
// mainly uses combinationUtil()
static void printCombination(int arr[], int n, int r)
{
// A temporary array to store all combination
// one by one
int data[] = new int[r];
// Print all combination using temporary
// array 'data[]'
combinationUtil(arr, n, r, 0, data, 0);
}
/* Driver function to check for above function */
public static void main(String[] args)
{
int arr[] = { 10, 20, 30, 40, 50 };
int r = 3;
int n = arr.length;
printCombination(arr, n, r);
}
}
/* This code is contributed by Devesh Agrawal */
Python
# Python3 program to print all
# subset combination of n
# element in given set of r element .
# arr[] ---> Input Array
# data[] ---> Temporary array to
# store current combination
# start & end ---> Starting and Ending
# indexes in arr[]
# index ---> Current index in data[]
# r ---> Size of a combination
# to be printed
def combinationUtil(arr, n, r,
index, data, i):
# Current combination is
# ready to be printed,
# print it
if(index == r):
for j in range(r):
print(data[j], end = " ")
print(" ")
return
# When no more elements
# are there to put in data[]
if(i >= n):
return
# current is included,
# put next at next
# location
data[index] = arr[i]
combinationUtil(arr, n, r,
index + 1, data, i + 1)
# current is excluded,
# replace it with
# next (Note that i+1
# is passed, but index
# is not changed)
combinationUtil(arr, n, r, index,
data, i + 1)
# The main function that
# prints all combinations
# of size r in arr[] of
# size n. This function
# mainly uses combinationUtil()
def printcombination(arr, n, r):
# A temporary array to
# store all combination
# one by one
data = list(range(r))
# Print all combination
# using temporary
# array 'data[]'
combinationUtil(arr, n, r,
0, data, 0)
# Driver Code
arr = [10, 20, 30, 40, 50]
r = 3
n = len(arr)
printcombination(arr, n, r)
# This code is contributed
# by Ambuj sahu
C#
// C# program to print all combination
// of size r in an array of size n
using System;
class GFG {
/* arr[] ---> Input Array
data[] ---> Temporary array to store
current combination start & end --->
Starting and Ending indexes in arr[]
index ---> Current index in data[]
r ---> Size of a combination to be
printed */
static void combinationUtil(int []arr,
int n, int r, int index,
int []data, int i)
{
// Current combination is ready to
// be printed, print it
if (index == r)
{
for (int j = 0; j < r; j++)
Console.Write(data[j] + " ");
Console.WriteLine("");
return;
}
// When no more elements are there
// to put in data[]
if (i >= n)
return;
// current is included, put next
// at next location
data[index] = arr[i];
combinationUtil(arr, n, r, index + 1,
data, i + 1);
// current is excluded, replace
// it with next (Note that i+1
// is passed, but index is not
// changed)
combinationUtil(arr, n, r, index,
data, i + 1);
}
// The main function that prints all
// combinations of size r in arr[] of
// size n. This function mainly uses
// combinationUtil()
static void printCombination(int []arr,
int n, int r)
{
// A temporary array to store all
// combination one by one
int []data = new int[r];
// Print all combination using
// temporary array 'data[]'
combinationUtil(arr, n, r, 0, data, 0);
}
/* Driver function to check for
above function */
public static void Main()
{
int []arr = { 10, 20, 30, 40, 50 };
int r = 3;
int n = arr.Length;
printCombination(arr, n, r);
}
}
// This code is contributed by vt_m.
JavaScript
<script>
// Javascript program to print all combination
// of size r in an array of size n
/* arr[] ---> Input Array
data[] ---> Temporary array to store
current combination start & end --->
Starting and Ending indexes in arr[]
index ---> Current index in data[]
r ---> Size of a combination to be
printed */
function combinationUtil(arr, n, r, index, data, i)
{
// Current combination is ready to
// be printed, print it
if (index == r)
{
for (let j = 0; j < r; j++)
document.write(data[j] + " ");
document.write("</br>");
return;
}
// When no more elements are there
// to put in data[]
if (i >= n)
return;
// current is included, put next
// at next location
data[index] = arr[i];
combinationUtil(arr, n, r, index + 1,
data, i + 1);
// current is excluded, replace
// it with next (Note that i+1
// is passed, but index is not
// changed)
combinationUtil(arr, n, r, index,
data, i + 1);
}
// The main function that prints all
// combinations of size r in arr[] of
// size n. This function mainly uses
// combinationUtil()
function printCombination(arr, n, r)
{
// A temporary array to store all
// combination one by one
let data = new Array(r);
data.fill(0);
// Print all combination using
// temporary array 'data[]'
combinationUtil(arr, n, r, 0, data, 0);
}
let arr = [ 10, 20, 30, 40, 50 ];
let r = 3;
let n = arr.length;
printCombination(arr, n, r);
</script>
PHP
<?php
// Program to print all combination of
// size r in an array of size n
// The main function that prints all
// combinations of size r in arr[] of
// size n. This function mainly uses
// combinationUtil()
function printCombination( $arr, $n, $r)
{
// A temporary array to store all
// combination one by one
$data = array();
// Print all combination using
// temporary array 'data[]'
combinationUtil($arr, $n, $r, 0, $data, 0);
}
/* arr[] ---> Input Array
n ---> Size of input array
r ---> Size of a combination to be printed
index ---> Current index in data[]
data[] ---> Temporary array to store
current combination
i ---> index of current element in arr[] */
function combinationUtil( $arr, $n, $r, $index,
$data, $i)
{
// Current combination is ready, print it
if ($index == $r) {
for ( $j = 0; $j < $r; $j++)
echo $data[$j]," ";
echo "\n";
return;
}
// When no more elements are there to
// put in data[]
if ($i >= $n)
return;
// current is included, put next at
// next location
$data[$index] = $arr[$i];
combinationUtil($arr, $n, $r, $index + 1,
$data, $i + 1);
// current is excluded, replace it with
// next (Note that i+1 is passed, but
// index is not changed)
combinationUtil($arr, $n, $r, $index,
$data, $i + 1);
}
// Driver program to test above functions
$arr = array( 10, 20, 30, 40, 50 );
$r = 3;
$n = count($arr);
printCombination($arr, $n, $r);
// This code is contributed by anuj_67.
?>
Output 10 20 30
10 20 40
10 20 50
10 30 40
10 30 50
10 40 50
20 30 40
20 30 50
20 40 50
30 40 50
Time complexity of this algorithm is O(n*r). The outer loop runs n times and the inner loop runs r times.
Auxiliary Space: O(r), the space complexity is O(r) because we are creating a temporary array of size r and storing the combinations
in it.
Approach 2: Using DP
The given program generates combinations of size r from an array of size n using a recursive approach. It does not use dynamic programming (DP) explicitly. However, dynamic programming can be applied to optimize the solution by avoiding redundant computations.
To implement a DP approach, we can use a 2D table to store the intermediate results and avoid recomputing the same combinations. Here’s an updated version of the program that incorporates dynamic programming:
C++
#include <iostream>
#include <vector>
using namespace std;
// Function to print all combinations of size r
// using a dynamic programming approach
void printCombination(int arr[], int n, int r)
{
vector<vector<int>> dp(n + 1, vector<int>(r + 1, 0));
// Calculate the combinations using dynamic programming
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= min(i, r); j++) {
if (j == 0 || j == i)
dp[i][j] = 1;
else
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
}
}
// Print the combinations
for (int i = 0; i < dp[n].size(); i++) {
if (dp[n][i] == 0)
break;
for (int j = 0; j < dp[n][i]; j++) {
cout << arr[i] << " ";
}
cout << endl;
}
}
// Driver program to test above functions
int main()
{
int arr[] = { 10, 20, 30, 40, 50 };
int r = 3;
int n = sizeof(arr) / sizeof(arr[0]);
printCombination(arr, n, r);
return 0;
}
Java
import java.util.ArrayList;
import java.util.List;
public class GFG {
// Function to print all combinations of size r
// using a dynamic programming approach
public static void printCombination(int[] arr, int n, int r) {
List<List<Integer>> dp = new ArrayList<>(n + 1);
for (int i = 0; i <= n; i++) {
dp.add(new ArrayList<>(r + 1));
for (int j = 0; j <= r; j++) {
dp.get(i).add(0);
}
}
// Calculate the combinations using dynamic programming
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= Math.min(i, r); j++) {
if (j == 0 || j == i) {
dp.get(i).set(j, 1);
} else {
int val1 = dp.get(i - 1).get(j - 1);
int val2 = dp.get(i - 1).get(j);
dp.get(i).set(j, val1 + val2);
}
}
}
// Print the combinations
for (int i = 0; i < dp.get(n).size(); i++) {
int count = dp.get(n).get(i);
if (count == 0) {
break;
}
for (int j = 0; j < count; j++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
// Driver program to test above functions
public static void main(String[] args) {
int[] arr = { 10, 20, 30, 40, 50 };
int r = 3;
int n = arr.length;
printCombination(arr, n, r);
}
}
Python
def print_combination(arr, n, r):
# Create a 2D list to store combinations
dp = [[0] * (r + 1) for _ in range(n + 1)]
# Calculate the combinations using dynamic programming
for i in range(n + 1):
for j in range(min(i, r) + 1):
if j == 0 or j == i:
dp[i][j] = 1
else:
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]
# Print the combinations
for i in range(len(dp[n])):
if dp[n][i] == 0:
break
for j in range(dp[n][i]):
print(arr[i], end=" ") # Print the element 'arr[i]' 'dp[n][i]' times
print() # Move to the next line for the next element
# Driver program to test the function
if __name__ == "__main__":
arr = [10, 20, 30, 40, 50]
r = 3 # Size of combinations
n = len(arr)
print_combination(arr, n, r)
# This code is contributed by shivamgupta0987654321
C#
using System;
using System.Collections.Generic;
public class GFG {
// Function to print all combinations of size r
// using a dynamic programming approach
public static void PrintCombination(int[] arr, int n,
int r)
{
List<List<int> > dp = new List<List<int> >(n + 1);
for (int i = 0; i <= n; i++) {
dp.Add(new List<int>(r + 1));
for (int j = 0; j <= r; j++) {
dp[i].Add(0);
}
}
// Calculate the combinations using dynamic
// programming
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= Math.Min(i, r); j++) {
if (j == 0 || j == i) {
dp[i][j] = 1;
}
else {
int val1 = dp[i - 1][j - 1];
int val2 = dp[i - 1][j];
dp[i][j] = val1 + val2;
}
}
}
// Print the combinations
for (int i = 0; i < dp[n].Count; i++) {
int count = dp[n][i];
if (count == 0) {
break;
}
for (int j = 0; j < count; j++) {
Console.Write(arr[i] + " ");
}
Console.WriteLine();
}
}
// Driver program to test above functions
public static void Main(string[] args)
{
int[] arr = { 10, 20, 30, 40, 50 };
int r = 3;
int n = arr.Length;
PrintCombination(arr, n, r);
}
}
JavaScript
function printCombination(arr, n, r) {
let dp = new Array(n + 1);
for (let i = 0; i <= n; i++) {
dp[i] = new Array(r + 1).fill(0);
}
// Calculate the combinations using dynamic programming
for (let i = 0; i <= n; i++) {
for (let j = 0; j <= Math.min(i, r); j++) {
if (j === 0 || j === i) {
dp[i][j] = 1;
} else {
let val1 = dp[i - 1][j - 1];
let val2 = dp[i - 1][j];
dp[i][j] = val1 + val2;
}
}
}
// Print the combinations
for (let i = 0; i < dp[n].length; i++) {
let count = dp[n][i];
if (count === 0) {
break;
}
for (let j = 0; j < count; j++) {
console.log(arr[i] + " ");
}
console.log();
}
}
// Driver program to test above function
let arr = [10, 20, 30, 40, 50];
let r = 3;
let n = arr.length;
printCombination(arr, n, r);
Output10
20 20 20 20 20
30 30 30 30 30 30 30 30 30 30
40 40 40 40 40 40 40 40 40 40
Time complexity of this algorithm is O(n*r).The outer loop runs n times and the inner loop runs r times.
Auxiliary Space: O(n*r).
Another Approach(using BitMasking):
Follow the below steps to solve the above problem:
1) Generate all possible binary numbers with a length equal to the number of elements in the set. Each binary number will represent a potential subset.
2) Iterate through each binary number from 0 to 2^N – 1, where N is the number of elements in the set. This represents all possible subsets of the set.
3) For each binary number, check the number of set bits(1s). If the count of set bits is equal to the desired subset size, consider it as a valid subset.
4) To extract the elements of the subset, iterate through the bits of the binary number. If a bit is set (1), include the corresponding element from the set in the subset.
5) Print the desired output.
Below is the implementation of above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void printSubset(int arr[], int subset[], int r) {
for (int i = 0; i < r; i++)
cout << subset[i] << " ";
cout << endl;
}
void printCombination(int arr[], int n, int r) {
int totalSubsets = 1 << n; // Total number of subsets is 2^n
for (int bitmask = 0; bitmask < totalSubsets; bitmask++) {
// Count the number of set bits in the bitmask
int count = 0;
int temp = bitmask;
while (temp > 0) {
count += temp & 1;
temp >>= 1;
}
if (count == r) {
int subset[r];
int index = 0;
for (int i = 0; i < n; i++) {
if (bitmask & (1 << i))
subset[index++] = arr[i];
}
printSubset(arr, subset, r);
}
}
}
int main() {
int arr[] = {10, 20, 30, 40, 50};
int r = 3;
int n = sizeof(arr) / sizeof(arr[0]);
printCombination(arr, n, r);
return 0;
}
// This code is contributed by Yash Agarwal(yashagarwal2852002)
Java
public class Main {
// Function to print a subset of the array
public static void printSubset(int[] arr, int[] subset, int r) {
for (int i = 0; i < r; i++)
System.out.print(subset[i] + " ");
System.out.println();
}
// Function to print combinations of 'r' elements from array 'arr'
public static void printCombination(int[] arr, int n, int r) {
int totalSubsets = 1 << n; // Total number of subsets is 2^n
for (int bitmask = 0; bitmask < totalSubsets; bitmask++) {
// Count the number of set bits (1s) in the bitmask
int count = 0;
int temp = bitmask;
while (temp > 0) {
count += temp & 1; // Check the least significant bit
temp >>= 1; // Right shift the bitmask
}
if (count == r) {
int[] subset = new int[r];
int index = 0;
for (int i = 0; i < n; i++) {
if ((bitmask & (1 << i)) != 0) // Check if the i-th bit is set
subset[index++] = arr[i];
}
printSubset(arr, subset, r); // Print the current combination
}
}
}
public static void main(String[] args) {
int[] arr = {10, 20, 30, 40, 50};
int r = 3; // Size of the subsets
int n = arr.length; // Number of elements in the array
printCombination(arr, n, r); // Find and print combinations
}
}
Python
def print_subset(arr, subset, r):
# Function to print a subset
for i in range(r):
print(subset[i]),
if i < r - 1:
print(" "),
print()
def print_combination(arr, n, r):
# Function to print combinations of elements from arr
total_subsets = 1 << n # Total number of subsets is 2^n
# Iterate through all possible subsets
for bitmask in range(total_subsets):
# Count the number of set bits in the bitmask
count = bin(bitmask).count('1')
# Check if the count of set bits is equal to r
if count == r:
subset = [0] * r
index = 0
# Build the subset using elements corresponding to set bits
for i in range(n):
if bitmask & (1 << i):
subset[index] = arr[i]
index += 1
# Print the subset
print_subset(arr, subset, r)
if __name__ == "__main__":
arr = [10, 20, 30, 40, 50]
r = 3
n = len(arr)
# Call the print_combination function to print combinations
print_combination(arr, n, r)
C#
using System;
class GFG
{
static void PrintSubset(int[] arr, int[] subset, int r)
{
for (int i = 0; i < r; i++)
Console.Write(subset[i] + " ");
Console.WriteLine();
}
static void PrintCombination(int[] arr, int n, int r)
{
int totalSubsets = 1 << n; // Total number of subsets is 2^n
for (int bitmask = 0; bitmask < totalSubsets; bitmask++)
{
// Count the number of set bits in the bitmask
int count = 0;
int temp = bitmask;
while (temp > 0)
{
count += temp & 1;
temp >>= 1;
}
if (count == r)
{
int[] subset = new int[r];
int index = 0;
for (int i = 0; i < n; i++)
{
if ((bitmask & (1 << i)) > 0)
subset[index++] = arr[i];
}
PrintSubset(arr, subset, r);
}
}
}
static void Main()
{
int[] arr = { 10, 20, 30, 40, 50 };
int r = 3;
int n = arr.Length;
PrintCombination(arr, n, r);
}
}
JavaScript
function printSubset(arr, subset, r) {
for (let i = 0; i < r; i++)
process.stdout.write(subset[i] + " ");
process.stdout.write("\n");
}
function printCombination(arr, n, r) {
let totalSubsets = 1 << n; // Total number of subsets is 2^n
for (let bitmask = 0; bitmask < totalSubsets; bitmask++) {
// Count the number of set bits in the bitmask
let count = 0;
let temp = bitmask;
while (temp > 0) {
count += temp & 1;
temp >>= 1;
}
if (count === r) {
let subset = new Array(r);
let index = 0;
for (let i = 0; i < n; i++) {
if (bitmask & (1 << i))
subset[index++] = arr[i];
}
printSubset(arr, subset, r);
}
}
}
let arr = [10, 20, 30, 40, 50];
let r = 3;
let n = arr.length;
printCombination(arr, n, r);
Output10 20 30
10 20 40
10 30 40
20 30 40
10 20 50
10 30 50
20 30 50
10 40 50
20 40 50
30 40 50
Time Complexity: O(2^n), where n is the number of elements in the given array.
Auxiliary Space: O(n+r)
Refer to the post below for more solutions and ideas to handle duplicates in the input array.
Print all possible combinations of r elements in a given array of size n.
Similar Reads
Print sums of all subsets of a given set
Given an array of integers, print sums of all subsets in it. Output sums can be printed in any order. Examples : Input: arr[] = {2, 3}Output: 0 2 3 5Explanation: All subsets of this array are - {{}, {2}, {3}, {2, 3}}, having sums - 0, 2, 3 and 5 respectively.Input: arr[] = {2, 4, 5}Output: 0 2 4 5 6
10 min read
Print all subsets of a given Set or Array
Given an array arr of size n, your task is to print all the subsets of the array in lexicographical order. A subset is any selection of elements from an array, where the order does not matter, and no element appears more than once. It can include any number of elements, from none (the empty subset)
12 min read
Sum of all subsets of a given size (=K)
Given an array arr[] consisting of N integers and a positive integer K, the task is to find the sum of all the subsets of size K. Examples: Input: arr[] = {1, 2, 4, 5}, K = 2Output: 36Explanation:The subsets of size K(= 2) are = {1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {4, 5}. Now, the sum of all sub
7 min read
Print all submasks of a given mask
Given an integer N, the task is to print all the subsets of the set formed by the set bits present in the binary representation of N. Examples: Input: N = 5Output: 5 4 1 Explanation:Binary representation of N is "101", Therefore all the required subsets are {"101", "100", "001", "000"}. Input: N = 2
4 min read
Given a set, find XOR of the XOR's of all subsets.
The question is to find XOR of the XOR's of all subsets. i.e if the set is {1,2,3}. All subsets are : [{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]. Find the XOR of each of the subset and then find the XOR of every subset result.We strongly recommend you to minimize your browser and try this yo
5 min read
Find all Unique Subsets of a given Set
Given an array A[] of positive integers, print all the unique non-empty subsets of the array Note: The set can not contain duplicate elements, so any repeated subset should be considered only once in the output. Examples: Input: A[] = {1, 5, 6}Output: {{1}, {1, 5}, {1, 6}, {5}, {5, 6}, {6}, {1, 5,
15+ min read
Finding all subsets of a given set in Java
Problem: Find all the subsets of a given set. Input: S = {a, b, c, d} Output: {}, {a} , {b}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d} The total number of subsets of any given set is equal to 2^ (no. of elements in the set). If we carefully not
2 min read
Sum of bitwise OR of all possible subsets of given set
Given an array arr[] of size n, we need to find sum of all the values that comes from ORing all the elements of the subsets. Prerequisites : Subset Sum of given set Examples : Input : arr[] = {1, 2, 3} Output : 18 Total Subsets = 23 -1= 7 1 = 1 2 = 2 3 = 3 1 | 2 = 3 1 | 3 = 3 2 | 3 = 3 1 | 2 | 3 = 3
8 min read
Product of Primes of all Subsets
Given an array a[] of size N. The value of a subset is the product of primes in that subset. A non-prime is considered to be 1 while finding value by-product. The task is to find the product of the value of all possible subsets. Examples: Input: a[] = {3, 7} Output: 20 The subsets are: {3} {7} {3, 7
8 min read
Sum of bitwise AND of all possible subsets of given set
Given an array, we need to calculate the Sum of Bit-wise AND of all possible subsets of the given array. Examples: Input : 1 2 3 Output : 9 For [1, 2, 3], all possible subsets are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} Bitwise AND of these subsets are, 1 + 2 + 3 + 0 + 1 + 2 + 0 = 9. So, th
7 min read