Print all elements in sorted order from row and column wise sorted matrix
Last Updated :
26 Apr, 2023
Given an n x n matrix, where every row and column is sorted in non-decreasing order. Print all elements of the matrix in sorted order.
Example:
Input: mat[][] = { {10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50},
};
Output: 10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
We can use Young Tableau to solve the above problem. The idea is to consider the given 2D array as Young Tableau and call extract minimum O(N)
Algorithm:
- Define a constant INF equal to INT_MAX and N equal to the size of the matrix.
- Implement a youngify function that takes a 2D matrix and two integer values i and j as input parameters.
- In the youngify function, find the values at the down and right sides of mat[i][j].
- If mat[i][j] is the down right corner element, then return.
- Move the smaller of two values (downVal and rightVal) to mat[i][j] and recursively call youngify for the smaller value.
- Implement an extractMin function that takes a 2D matrix as an input parameter.
- In the extractMin function, store the value at mat[0][0] in a variable ret and update mat[0][0] with INF.
- Recursively call youngify with the starting cell (0, 0).
- Return the value stored in ret.
- Implement a printSorted function that takes a 2D matrix as an input parameter.
- Iterate N*N times and call extractMin each time and print the returned value.
- Implement the main function.
- Declare a 2D matrix mat of size NxN and initialize it with values.
- Call the printSorted function with mat as an input parameter.
- Return 0
Below is the implementation of this approach:
C++
// A C++ program to Print all elements in sorted order from row and
// column wise sorted matrix
#include<iostream>
#include<climits>
using namespace std;
#define INF INT_MAX
#define N 4
// A utility function to youngify a Young Tableau. This is different
// from standard youngify. It assumes that the value at mat[0][0] is
// infinite.
void youngify(int mat[][N], int i, int j)
{
// Find the values at down and right sides of mat[i][j]
int downVal = (i+1 < N)? mat[i+1][j]: INF;
int rightVal = (j+1 < N)? mat[i][j+1]: INF;
// If mat[i][j] is the down right corner element, return
if (downVal==INF && rightVal==INF)
return;
// Move the smaller of two values (downVal and rightVal) to
// mat[i][j] and recur for smaller value
if (downVal < rightVal)
{
mat[i][j] = downVal;
mat[i+1][j] = INF;
youngify(mat, i+1, j);
}
else
{
mat[i][j] = rightVal;
mat[i][j+1] = INF;
youngify(mat, i, j+1);
}
}
// A utility function to extract minimum element from Young tableau
int extractMin(int mat[][N])
{
int ret = mat[0][0];
mat[0][0] = INF;
youngify(mat, 0, 0);
return ret;
}
// This function uses extractMin() to print elements in sorted order
void printSorted(int mat[][N])
{
for (int i=0; i<N*N; i++)
cout << extractMin(mat) << " ";
}
// driver program to test above function
int main()
{
int mat[N][N] = { {10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50},
};
printSorted(mat);
return 0;
}
Java
// A Java program to Print all elements
// in sorted order from row and
// column wise sorted matrix
import java.io.*;
public class GFG
{
static final int INF = Integer.MAX_VALUE;
static final int N = 4;
// A utility function to youngify a Young Tableau.
// This is different from standard youngify.
// It assumes that the value at mat[0][0] is infinite.
static void youngify(int mat[][], int i, int j)
{
// Find the values at down and right sides of mat[i][j]
int downVal = (i + 1 < N) ?
mat[i + 1][j] : INF;
int rightVal = (j + 1 < N) ?
mat[i][j + 1] : INF;
// If mat[i][j] is the down right corner element,
// return
if (downVal == INF && rightVal == INF)
{
return;
}
// Move the smaller of two values
// (downVal and rightVal) to mat[i][j]
// and recur for smaller value
if (downVal < rightVal)
{
mat[i][j] = downVal;
mat[i + 1][j] = INF;
youngify(mat, i + 1, j);
}
else
{
mat[i][j] = rightVal;
mat[i][j + 1] = INF;
youngify(mat, i, j + 1);
}
}
// A utility function to extract
// minimum element from Young tableau
static int extractMin(int mat[][])
{
int ret = mat[0][0];
mat[0][0] = INF;
youngify(mat, 0, 0);
return ret;
}
// This function uses extractMin()
// to print elements in sorted order
static void printSorted(int mat[][])
{
System.out.println("Elements of matrix in sorted order n");
for (int i = 0; i < N * N; i++)
{
System.out.print(extractMin(mat) + " ");
}
}
// Driver Code
public static void main(String args[])
{
int mat[][] = {{10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50}};
printSorted(mat);
}
}
// This code is contributed by Rajput-Ji
Python3
# Python 3 program to Print all elements
# in sorted order from row and column
# wise sorted matrix
import sys
INF = sys.maxsize
N = 4
# A utility function to youngify a Young
# Tableau. This is different from standard
# youngify. It assumes that the value at
# mat[0][0] is infinite.
def youngify(mat, i, j):
# Find the values at down and
# right sides of mat[i][j]
downVal = mat[i + 1][j] if (i + 1 < N) else INF
rightVal = mat[i][j + 1] if (j + 1 < N) else INF
# If mat[i][j] is the down right
# corner element, return
if (downVal == INF and rightVal == INF):
return
# Move the smaller of two values
# (downVal and rightVal) to mat[i][j]
# and recur for smaller value
if (downVal < rightVal):
mat[i][j] = downVal
mat[i + 1][j] = INF
youngify(mat, i + 1, j)
else:
mat[i][j] = rightVal
mat[i][j + 1] = INF
youngify(mat, i, j + 1)
# A utility function to extract minimum
# element from Young tableau
def extractMin(mat):
ret = mat[0][0]
mat[0][0] = INF
youngify(mat, 0, 0)
return ret
# This function uses extractMin() to
# print elements in sorted order
def printSorted(mat):
print("Elements of matrix in sorted order n")
i = 0
while i < N * N:
print(extractMin(mat), end = " ")
i += 1
# Driver Code
if __name__ == "__main__":
mat = [[10, 20, 30, 40],
[15, 25, 35, 45],
[27, 29, 37, 48],
[32, 33, 39, 50]]
printSorted(mat)
# This code is contributed by ita_c
C#
// A C# program to Print all elements
// in sorted order from row and
// column wise sorted matrix
using System;
class GFG
{
static int INF = int.MaxValue;
static int N = 4;
// A utility function to youngify a Young Tableau.
// This is different from standard youngify.
// It assumes that the value at mat[0][0] is infinite.
static void youngify(int [,]mat, int i, int j)
{
// Find the values at down and right sides of mat[i][j]
int downVal = (i + 1 < N) ?
mat[i + 1,j] : INF;
int rightVal = (j + 1 < N) ?
mat[i,j + 1] : INF;
// If mat[i][j] is the down right corner element,
// return
if (downVal == INF && rightVal == INF)
{
return;
}
// Move the smaller of two values
// (downVal and rightVal) to mat[i][j]
// and recur for smaller value
if (downVal < rightVal)
{
mat[i,j] = downVal;
mat[i + 1,j] = INF;
youngify(mat, i + 1, j);
}
else
{
mat[i, j] = rightVal;
mat[i, j + 1] = INF;
youngify(mat, i, j + 1);
}
}
// A utility function to extract
// minimum element from Young tableau
static int extractMin(int [,]mat)
{
int ret = mat[0,0];
mat[0, 0] = INF;
youngify(mat, 0, 0);
return ret;
}
// This function uses extractMin()
// to print elements in sorted order
static void printSorted(int [,]mat)
{
Console.WriteLine("Elements of matrix in sorted order n");
for (int i = 0; i < N * N; i++)
{
Console.Write(extractMin(mat) + " ");
}
}
// Driver Code
static public void Main ()
{
int [,]mat = {{10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50}};
printSorted(mat);
}
}
// This code is contributed by ajit.
JavaScript
<script>
// A Javascript program to Print all elements
// in sorted order from row and
// column wise sorted matrix
let INF = Number.MAX_VALUE;
let N = 4;
// A utility function to youngify a Young Tableau.
// This is different from standard youngify.
// It assumes that the value at mat[0][0] is infinite.
function youngify(mat,i,j)
{
// Find the values at down and right sides of mat[i][j]
let downVal = (i + 1 < N) ?
mat[i + 1][j] : INF;
let rightVal = (j + 1 < N) ?
mat[i][j + 1] : INF;
// If mat[i][j] is the down right corner element,
// return
if (downVal == INF && rightVal == INF)
{
return;
}
// Move the smaller of two values
// (downVal and rightVal) to mat[i][j]
// and recur for smaller value
if (downVal < rightVal)
{
mat[i][j] = downVal;
mat[i + 1][j] = INF;
youngify(mat, i + 1, j);
}
else
{
mat[i][j] = rightVal;
mat[i][j + 1] = INF;
youngify(mat, i, j + 1);
}
}
// A utility function to extract
// minimum element from Young tableau
function extractMin(mat)
{
let ret = mat[0][0];
mat[0][0] = INF;
youngify(mat, 0, 0);
return ret;
}
// This function uses extractMin()
// to print elements in sorted order
function printSorted(mat)
{
document.write("Elements of matrix in sorted order n<br>");
for (let i = 0; i < N * N; i++)
{
document.write(extractMin(mat) + " ");
}
}
let mat=[[10, 20, 30, 40],[15, 25, 35, 45],
[27, 29, 37, 48],[32, 33, 39, 50]];
printSorted(mat);
// This code is contributed by avanitrachhadiya2155
</script>
Output10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
Time complexity of extract minimum is O(N) and it is called O(N2) times. Therefore the overall time complexity is O(N3).
Auxiliary Space: O(N2)
Another approach: The idea is to keep all elements of the matrix in a one-dimensional array and then sort the array and print all values in it.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Function to print all elements of matrix in sorted orderd
void sortedMatrix(int N, vector<vector<int> > Mat)
{
vector<int> temp;
// Store all elements of matrix into temp
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
temp.push_back(Mat[i][j]);
}
}
// Sort the temp
sort(temp.begin(), temp.end());
// Print the values of temp
for (int i = 0; i < temp.size(); i++) {
cout << temp[i] << " ";
}
}
int main()
{
int N = 4;
vector<vector<int> > Mat = {
{ 10, 20, 30, 40 },
{ 15, 25, 35, 45 },
{ 27, 29, 37, 48 },
{ 32, 33, 39, 50 },
};
sortedMatrix(N, Mat);
return 0;
}
// This code is contributed by pratiknawale999
Java
// A Java program to Print all elements
// in sorted order from row and
// column wise sorted matrix
import java.io.*;
import java.util.*;
class GFG {
// Function to print all elements of matrix in sorted orderd
static void sortedMatrix(int N, int[][] mat)
{
List<Integer> temp = new ArrayList<Integer>();
// Store all elements of matrix into temp
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
temp.add(mat[i][j]);
}
}
// Sort the temp
Collections.sort(temp);
// Print the values of temp
for (int i = 0; i < temp.size(); i++) {
System.out.print(temp.get(i)+" ");
}
}
public static void main (String[] args) {
int N = 4;
int mat[][] = {{10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50}};
sortedMatrix(N,mat);
}
}
// This code is contributed by shruti456rawal
Python3
# Function to print all elements of matrix in sorted orderd
def sortedMatrix(N, Mat):
temp = []
# Store all elements of matrix into temp
for i in range(0, N):
for j in range(0, N):
temp.append(Mat[i][j])
# Sort the temp
temp.sort()
# Print the values of temp
for i in range(len(temp)):
print(temp[i], end=' ')
if __name__ == "__main__":
N = 4
Mat = [[10, 20, 30, 40], [15, 25, 35, 45],
[27, 29, 37, 48], [32, 33, 39, 50]]
sortedMatrix(N, list(Mat))
# This code is contributed by Aarti_Rathi
C#
using System;
using System.Collections.Generic;
public static class GFG {
// Function to print all elements of matrix in sorted
// orderd
static void sortedMatrix(int N, List<List<int> > Mat)
{
List<int> temp = new List<int>();
// Store all elements of matrix into temp
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
temp.Add(Mat[i][j]);
}
}
// Sort the temp
temp.Sort();
// Print the values of temp
for (int i = 0; i < temp.Count; i++) {
Console.Write(temp[i]);
Console.Write(" ");
}
}
public static void Main()
{
int N = 4;
List<List<int> > Mat = new List<List<int> >() {
new List<int>{ 10, 20, 30, 40 },
new List<int>{ 15, 25, 35, 45 },
new List<int>{ 27, 29, 37, 48 },
new List<int>
{
32, 33, 39, 50
}
};
sortedMatrix(N, new List<List<int> >(Mat));
}
// This code is contributed by Aarti_Rathi
}
JavaScript
// A JavaScript program to Print all elements
// in sorted order from row and
// column wise sorted matrix
// Function to print all elements of matrix in sorted orderd
function sortedMatrix(N, mat)
{
var temp = [];
// Store all elements of matrix into temp
for (var i=0; i < N; i++)
{
for (var j=0; j < N; j++)
{
(temp.push(mat[i][j]));
}
}
// Sort the temp
temp.sort();
// Print the values of temp
for (var i =0; i < temp.length; i++)
{
console.log(temp[i] + " ");
}
}
var N = 4;
var mat = [[10, 20, 30, 40], [15, 25, 35, 45], [27, 29, 37, 48], [32, 33, 39, 50]];
sortedMatrix(N, mat);
// This code is contributed by Aarti_Rathi
Output10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
Time Complexity: O(N2log(N2))
Auxiliary Space: O(N2)
A better solution is to use the approach used for merging k sorted arrays. The idea is to use a Min Heap of size N which stores elements of first column. They do extract minimum. In extract minimum, replace the minimum element with the next element of the row from which the element is extracted.
C++
// C++ program to merge k sorted arrays of size n each.
#include<iostream>
#include<climits>
using namespace std;
#define N 4
// A min heap node
struct MinHeapNode
{
int element; // The element to be stored
int i; // index of the row from which the element is taken
int j; // index of the next element to be picked from row
};
// Prototype of a utility function to swap two min heap nodes
void swap(MinHeapNode *x, MinHeapNode *y);
// A class for Min Heap
class MinHeap
{
MinHeapNode *harr; // pointer to array of elements in heap
int heap_size; // size of min heap
public:
// Constructor: creates a min heap of given size
MinHeap(MinHeapNode a[], int size);
// to heapify a subtree with root at given index
void MinHeapify(int );
// to get index of left child of node at index i
int left(int i) { return (2*i + 1); }
// to get index of right child of node at index i
int right(int i) { return (2*i + 2); }
// to get the root
MinHeapNode getMin() { return harr[0]; }
// to replace root with new node x and heapify() new root
void replaceMin(MinHeapNode x) { harr[0] = x; MinHeapify(0); }
};
// This function prints elements of a given matrix in non-decreasing
// order. It assumes that ma[][] is sorted row wise sorted.
void printSorted(int mat[][N])
{
// Create a min heap with k heap nodes. Every heap node
// has first element of an array
MinHeapNode *harr = new MinHeapNode[N];
for (int i = 0; i < N; i++)
{
harr[i].element = mat[i][0]; // Store the first element
harr[i].i = i; // index of row
harr[i].j = 1; // Index of next element to be stored from row
}
MinHeap hp(harr, N); // Create the min heap
// Now one by one get the minimum element from min
// heap and replace it with next element of its array
for (int count = 0; count < N*N; count++)
{
// Get the minimum element and store it in output
MinHeapNode root = hp.getMin();
cout << root.element << " ";
// Find the next element that will replace current
// root of heap. The next element belongs to same
// array as the current root.
if (root.j < N)
{
root.element = mat[root.i][root.j];
root.j += 1;
}
// If root was the last element of its array
else root.element = INT_MAX; //INT_MAX is for infinite
// Replace root with next element of array
hp.replaceMin(root);
}
}
// FOLLOWING ARE IMPLEMENTATIONS OF STANDARD MIN HEAP METHODS
// FROM CORMEN BOOK
// Constructor: Builds a heap from a given array a[] of given size
MinHeap::MinHeap(MinHeapNode a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1)/2;
while (i >= 0)
{
MinHeapify(i);
i--;
}
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MinHeap::MinHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l].element < harr[i].element)
smallest = l;
if (r < heap_size && harr[r].element < harr[smallest].element)
smallest = r;
if (smallest != i)
{
swap(&harr[i], &harr[smallest]);
MinHeapify(smallest);
}
}
// A utility function to swap two elements
void swap(MinHeapNode *x, MinHeapNode *y)
{
MinHeapNode temp = *x; *x = *y; *y = temp;
}
// driver program to test above function
int main()
{
int mat[N][N] = { {10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50},
};
printSorted(mat);
return 0;
}
Python3
# Python code to merge k sorted arrays of size n each.
N = 4
# A min heap node
class MinHeapNode:
def __init__(self, element, i, j):
self.element = element # The element to be stored
self.i = i # index of the row from which the element is taken
self.j = j # index of the next element to be picked from row
# A class for Min Heap
class MinHeap:
def __init__(self, a, size):
self.harr = a # pointer to array of elements in heap
self.heapSize = size # size of min heap
# Build heap
i = (self.heapSize - 1) // 2
while i >= 0:
self.minHeapify(i)
i -= 1
def minHeapify(self, i):
l = self.left(i)
r = self.right(i)
smallest = i
if l < self.heapSize and self.harr[l].element < self.harr[i].element:
smallest = l
if r < self.heapSize and self.harr[r].element < self.harr[smallest].element:
smallest = r
if smallest != i:
temp = self.harr[i]
self.harr[i] = self.harr[smallest]
self.harr[smallest] = temp
self.minHeapify(smallest)
# to get index of left child of node at index i
def left(self, i): return 2 * i + 1
# to get index right child of node at index i
def right(self, i): return 2 * i + 2
# to get the root
def getMin(self):
return self.harr[0]
# to replace root with new node x and heapify() new root
def replaceMin(self, x):
self.harr[0] = x
self.minHeapify(0)
def swap(x, y):
x.element, y.element = y.element, x.element
# This function prints elements of a given matrix in non-decreasing
# order. It assumes that ma[][] is sorted row wise sorted.
def printSorted(mat):
# Create a min heap with k heap nodes. Every heap node
# has first element of an array
harr = [MinHeapNode(mat[i][0], i, 1) for i in range(N)]
heap = MinHeap(harr, N) # Create the min heap
# Now one by one get the minimum element from min
# heap and replace it with next element of its array
for count in range(N*N):
# Get the minimum element and store it in output
root = heap.getMin()
print(root.element, end=" ")
# Find the next element that will replace current
# root of heap. The next element belongs to same
# array as the current root.
if (root.j < N):
root.element = mat[root.i][root.j]
root.j += 1
# If root was the last element of its array
else:
root.element = float('inf')
# Replace root with next element of array
heap.replaceMin(root)
# Test
mat = [
[10, 20, 30, 40],
[15, 25, 35, 45],
[27, 29, 37, 48],
[32, 33, 39, 50]
]
printSorted(mat)
# This code is contributed by phasing17
JavaScript
// JavaScript code to merge k sorted arrays of size n each.
const N = 4;
// A min heap node
class MinHeapNode {
constructor(element, i, j) {
this.element = element; // The element to be stored
this.i = i; // index of the row from which the element is taken
this.j = j; // index of the next element to be picked from row
}
}
// A class for Min Heap
class MinHeap {
constructor(a, size) {
this.harr = a; // pointer to array of elements in heap
this.heapSize = size; // size of min heap
// Build heap
let i = Math.floor((this.heapSize - 1) / 2);
while (i >= 0) {
this.minHeapify(i);
i--;
}
}
// to heapify a subtree with root at given index
minHeapify(i) {
let l = this.left(i);
let r = this.right(i);
let smallest = i;
if (l < this.heapSize && this.harr[l].element < this.harr[i].element) smallest = l;
if (r < this.heapSize && this.harr[r].element < this.harr[smallest].element) smallest = r;
if (smallest !== i) {
let temp = this.harr[i];
this.harr[i] = this.harr[smallest];
this.harr[smallest] = temp;
this.minHeapify(smallest);
}
}
// to get index of left child of node at index i
left(i) { return 2 * i + 1; }
// to get index of right child of node at index i
right(i) { return 2 * i + 2; }
// to get the root
getMin() { return this.harr[0]; }
// to replace root with new node x and heapify() new root
replaceMin(x) {
this.harr[0] = x;
this.minHeapify(0);
}
// Utility function to swap two elements
swap(x, y) {
let temp = x.element;
x.element = y.element;
y.element = temp;
}
}
// This function prints elements of a given matrix in non-decreasing
// order. It assumes that ma[][] is sorted row wise sorted.
function printSorted(mat) {
// Create a min heap with k heap nodes. Every heap node
// has first element of an array
let harr = new Array(N);
for (let i = 0; i < N; i++) {
harr[i] = new MinHeapNode(mat[i][0], i, 1); // Store the first element
}
let heap = new MinHeap(harr, N); // Create the min heap
// Now one by one get the minimum element from min
// heap and replace it with next element of its array
for (let count = 0; count < N * N; count++) {
// Get the minimum element and store it in output
let root = heap.getMin();
console.log(root.element + " ");
// Find the next element that will replace current
// root of heap. The next element belongs to same
// array as the current root.
if (root.j < N) {
root.element = mat[root.i][root.j];
root.j += 1;
}
// If root was the last element of its array
else root.element = Number.MAX_VALUE; //Number.MAX_VALUE is for infinite
// Replace root with next element of array
heap.replaceMin(root);
}
}
// Test
let mat = [
[10, 20, 30, 40],
[15, 25, 35, 45],
[27, 29, 37, 48],
[32, 33, 39, 50]
];
printSorted(mat);
// Expected output: 10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
Java
import java.util.*;
class MinHeapNode {
int element;
int i;
int j;
MinHeapNode(int element, int i, int j) {
this.element = element;
this.i = i;
this.j = j;
}
}
class MinHeap {
int heapSize;
MinHeapNode[] harr;
MinHeap(MinHeapNode[] a, int size) {
harr = a;
heapSize = size;
int i = (heapSize - 1) / 2;
while (i >= 0) {
minHeapify(i);
i--;
}
}
void minHeapify(int i) {
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heapSize && harr[l].element < harr[i].element) {
smallest = l;
}
if (r < heapSize && harr[r].element < harr[smallest].element) {
smallest = r;
}
if (smallest != i) {
MinHeapNode temp = harr[i];
harr[i] = harr[smallest];
harr[smallest] = temp;
minHeapify(smallest);
}
}
int left(int i) { return 2 * i + 1; }
int right(int i) { return 2 * i + 2; }
MinHeapNode getMin() { return harr[0]; }
void replaceMin(MinHeapNode x) {
harr[0] = x;
minHeapify(0);
}
}
class Main {
static int N = 4;
static void printSorted(int[][] mat) {
MinHeapNode[] harr = new MinHeapNode[N];
for (int i = 0; i < N; i++) {
harr[i] = new MinHeapNode(mat[i][0], i, 1);
}
MinHeap heap = new MinHeap(harr, N);
for (int count = 0; count < N * N; count++) {
MinHeapNode root = heap.getMin();
System.out.print(root.element + " ");
if (root.j < N) {
root.element = mat[root.i][root.j];
root.j += 1;
} else {
root.element = Integer.MAX_VALUE;
}
heap.replaceMin(root);
}
}
public static void main(String[] args) {
int[][] mat = {
{10, 20, 30, 40},
{15, 25, 35, 45},
{27, 29, 37, 48},
{32, 33, 39, 50}
};
printSorted(mat);
}
}
// this code is added by devendrasalunke
C#
using System;
using System.Collections.Generic;
// Define a class to represent a node in the min heap
class MinHeapNode {
public int element; // The value of the element in the node
public int i; // The row index of the element in the matrix
public int j; // The column index of the element in the matrix
// Constructor to create a new node with the given values
public MinHeapNode(int element, int i, int j) {
this.element = element;
this.i = i;
this.j = j;
}
}
// Define a class to represent a min heap data structure
class MinHeap {
public int heapSize; // The number of elements in the heap
public MinHeapNode[] harr; // An array to store the heap elements
// Constructor to create a new heap from the given array of nodes
public MinHeap(MinHeapNode[] a, int size) {
harr = a;
heapSize = size;
// Starting from the last non-leaf node and moving up,
// apply the minHeapify operation to all nodes in the heap
int i = (heapSize - 1) / 2;
while (i >= 0) {
minHeapify(i);
i--;
}
}
// Method to maintain the min heap property of the tree rooted at index i
public void minHeapify(int i) {
int l = left(i);
int r = right(i);
int smallest = i;
// If the left child is smaller than the parent, mark it as the smallest
if (l < heapSize && harr[l].element < harr[i].element) {
smallest = l;
}
// If the right child is smaller than the smallest so far, mark it as the smallest
if (r < heapSize && harr[r].element < harr[smallest].element) {
smallest = r;
}
// If the smallest element is not the parent, swap it with the parent
// and recursively apply minHeapify to the subtree rooted at the smallest element
if (smallest != i) {
MinHeapNode temp = harr[i];
harr[i] = harr[smallest];
harr[smallest] = temp;
minHeapify(smallest);
}
}
// Method to compute the index of the left child of a node at index i
public int left(int i) { return 2 * i + 1; }
// Method to compute the index of the right child of a node at index i
public int right(int i) { return 2 * i + 2; }
// Method to get the minimum element from the heap (i.e., the root of the tree)
public MinHeapNode getMin() { return harr[0]; }
// Method to replace the minimum element in the heap with a new element x,
// and then restore the min heap property of the tree
public void replaceMin(MinHeapNode x) {
harr[0] = x;
minHeapify(0);
}
}
class Program {
static int N = 4;
static void printSorted(int[][] mat) {
// Create a new MinHeapNode array and fill it with the first element from each row in the matrix.
MinHeapNode[] harr = new MinHeapNode[N];
for (int i = 0; i < N; i++) {
harr[i] = new MinHeapNode(mat[i][0], i, 1);
}
// Create a new MinHeap and pass the array and its size to its constructor.
MinHeap heap = new MinHeap(harr, N);
// Traverse the entire matrix by looping N*N times
for (int count = 0; count < N * N; count++) {
// Get the minimum element from the heap and print it
MinHeapNode root = heap.getMin();
Console.Write(root.element + " ");
// If there are more elements in the row that contains the minimum element,
// replace the minimum element in the heap with the next element in the row
if (root.j < N) {
root.element = mat[root.i][root.j];
root.j += 1;
} else {
// If we have reached the end of the row, replace the minimum element in the heap with infinity
root.element = int.MaxValue;
}
// Replace the root with the new element in the heap
heap.replaceMin(root);
}
}
static void Main(string[] args) {
// Initialize a 2D matrix
int[][] mat = {
new int[]{10, 20, 30, 40},
new int[]{15, 25, 35, 45},
new int[]{27, 29, 37, 48},
new int[]{32, 33, 39, 50}
};
// Call the printSorted function with the matrix as argument
printSorted(mat);
}
}
Output10 15 20 25 27 29 30 32 33 35 37 39 40 45 48 50
Time complexity: O(N2LogN).
Auxiliary Space: O(N)
Exercise:
Above solutions work for a square matrix. Extend the above solutions to work for an M*N rectangular matrix.
Similar Reads
heapq in Python to print all elements in sorted order from row and column wise sorted matrix
Given an n x n matrix, where every row and column is sorted in non-decreasing order. Print all elements of matrix in sorted order. Examples: Input : mat= [[10, 20, 30, 40], [15, 25, 35, 45], [27, 29, 37, 48], [32, 33, 39, 50]] Output : Elements of matrix in sorted order [10, 15, 20, 25, 27, 29, 30,
2 min read
Find a common element in all rows of a given row-wise sorted matrix
Given a matrix where every row is sorted in increasing order. Write a function that finds and returns a common element in all rows. If there is no common element, then returns -1. Example: Input: mat[4][5] = { {1, 2, 3, 4, 5}, {2, 4, 5, 8, 10}, {3, 5, 7, 9, 11}, {1, 3, 5, 7, 9}, };Output: 5A O(m*n*n
15+ min read
Count zeros in a row wise and column wise sorted matrix
Given a n x n binary matrix (elements in matrix can be either 1 or 0) where each row and column of the matrix is sorted in ascending order, count number of 0s present in it.Examples: Input: [0, 0, 0, 0, 1][0, 0, 0, 1, 1][0, 1, 1, 1, 1][1, 1, 1, 1, 1][1, 1, 1, 1, 1]Output: 8Input: [0, 0][0, 0]Output:
6 min read
Find all matrix elements which are minimum in their row and maximum in their column
Given a matrix mat[][] of size M * N, the task is to find all matrix elements which are minimum in their respective row and maximum in their respective column. If no such element is present, print -1. Examples: Input: mat[][] = {{1, 10, 4}, {9, 3, 8}, {15, 16, 17}}Output: 15Explanation:15 is the onl
7 min read
Print all the super diagonal elements of the given square matrix
Given a square matrix mat[][] of size n * n. The task is to print all the elements which lie on the super-diagonal of the given matrix.Examples: Input: mat[][] = { {1, 2, 3}, {3, 3, 4, }, {2, 4, 6}} Output: 2 4Input: mat[][] = { {1, 2, 3, 4}, {3, 3, 4, 4}, {2, 4, 6, 3}, {1, 1, 1, 3}} Output: 2 4 3 A
4 min read
Largest row-wise and column-wise sorted sub-matrix
Given an N * M matrix mat[][], the task is to find the area-wise largest rectangular sub-matrix such that each column and each row of the sub-matrix is strictly increasing. Examples: Input: mat[][] = {{1, 2, 3}, {4, 5, 6}, {1, 2, 3}} Output: 6 Largest sub-matrix will be {{1, 2, 3}, {4, 5, 6}}. Numbe
13 min read
Print all the sub diagonal elements of the given square matrix
Given a square matrix mat[][] of size n * n. The task is to print all the elements which lie on the sub-diagonal of the given matrix.Examples: Input: mat[][] = { {1, 2, 3}, {3, 3, 4, }, {2, 4, 6}} Output: 3 4Input: mat[][] = { {1, 2, 3, 4}, {3, 3, 4, 4}, {2, 4, 6, 3}, {1, 1, 1, 3}} Output: 3 4 1 Rec
7 min read
Find the original matrix when largest element in a row and a column are given
Given two arrays A[] and B[] of N and M integers respectively. Also given is a N X M binary matrix where 1 indicates that there was a positive integer in the original matrix and 0 indicates that the position is filled with 0 in the original matrix. The task is to form back the original matrix such t
6 min read
Kth smallest element in a row-wise and column-wise sorted 2D array
Given an n x n matrix, every row and column is sorted in non-decreasing order. Given a number K where K lies in the range [1, n*n], find the Kth smallest element in the given 2D matrix.Example:Input: mat =[[10, 20, 30, 40], [15, 25, 35, 45], [24, 29, 37, 48], [32, 33, 39, 50]]K = 3Output: 20Explanat
15+ min read
Sort the matrix row-wise and column-wise
Given a n x n matrix. The problem is to sort the matrix row-wise and column wise. Examples: Input : mat[][] = { {4, 1, 3}, {9, 6, 8}, {5, 2, 7} } Output : 1 3 4 2 5 7 6 8 9 Input : mat[][] = { {12, 7, 1, 8}, {20, 9, 11, 2}, {15, 4, 5, 13}, {3, 18, 10, 6} } Output : 1 5 8 12 2 6 10 15 3 7 11 18 4 9 1
9 min read