Open In App

POWER() Function in MySQL

Last Updated : 01 Oct, 2020
Comments
Improve
Suggest changes
Like Article
Like
Report
POWER() function in MySQL is used to find the value of a number raised to the power of another number. It Returns the value of X raised to the power of Y. Syntax :
POWER(X, Y)
Parameter : This method accepts two parameter which are described below :
  • X : It specifies the base number.
  • Y : It specifies the exponent number.
Returns : It returns the value of X raised to the power of Y. Example-1 : Finding Power value when both base and exponent is positive using POWER() function.
SELECT POWER( 5, 4) AS Power_Value ;
Output :
Power_Value
625
Example-2 : Finding Power value when base and is positive but exponent is negative using POWER() function.
SELECT POWER( 2, -4) AS Power_Value ;
Output :
Power_Value
0.0625
Example-3 : Finding Power value when base and is negative but exponent is positive using POWER() function.
SELECT POWER( -3, 3) AS Power_Value ;
Output :
Power_Value
-27
Example-4 : Finding Power value when both base and exponent is negative using POWER() function.
SELECT POWER( -3, -4) AS Power_Value ;
Output :
Power_Value
0.012345679012345678
Example-5 : The POWER function can also be used to find the power value between column data. To demonstrate create a table named. Triangle.
CREATE TABLE Triangle(

    Type VARCHAR(25) NOT NULL,
    NoOfSides INT NOT NULL,
    Base INT NOT NULL,
    Height INT NOT NULL
);
Now inserting some data to the Triangle table :
INSERT INTO  
    Triangle(Type, NoOfSides, Base, Height )
VALUES
    ('Right-angled Triangle', 3, 4, 3  ),
    ('Right-angled Triangle', 3, 2, 5  ),
    ('Right-angled Triangle', 3, 1, 7  ),
    ('Right-angled Triangle', 3, 7, 9  ),
    ('Right-angled Triangle', 3, 4, 6  ),
    ('Right-angled Triangle', 3, 8, 3  ),
    ('Right-angled Triangle', 3, 10, 10  ) ;
Showing all data in Triangle Table -
Select * from Triangle ;
Type NoOfSides Base Height
Right-angled Triangle 3 4 3
Right-angled Triangle 3 2 5
Right-angled Triangle 3 1 7
Right-angled Triangle 3 7 9
Right-angled Triangle 3 4 6
Right-angled Triangle 3 8 3
Right-angled Triangle 3 10 10
Now, we are going to find the hypotenuse and area for each Right-angled Triangle.
SELECT 
    *,
    sqrt(POWER(Base, 2) + POWER(Height, 2))  AS Hypotenuse,
    0.5 * Base * Height as Area  
FROM Triangle;    
Output :
Type NoOfSides Base Height Hypotenuse Area
Right-angled Triangle 3 4 3 5 6.0
Right-angled Triangle 3 2 5 5.385164807134504 5.0
Right-angled Triangle 3 1 7 7.0710678118654755 3.5
Right-angled Triangle 3 7 9 11.40175425099138 31.5
Right-angled Triangle 3 4 6 7.211102550927978 12.0
Right-angled Triangle 3 8 3 8.54400374531753 12.0
Right-angled Triangle 3 10 10 14.142135623730951 50.0

Next Article
Article Tags :

Similar Reads