Pandas Series dt.quarter | Find Quarter from DateTime Object Last Updated : 11 Jul, 2025 Comments Improve Suggest changes Like Article Like Report Pandas dt.quarter attribute returns the quarter of the date in the underlying DateTime based data in the given Series object. Example Python3 import pandas as pd sr = pd.Series(['2012-10-21 09:30', '2019-7-18 12:30', '2008-02-2 10:30', '2010-4-22 09:25', '2019-11-8 02:22']) idx = ['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5'] sr.index = idx sr = pd.to_datetime(sr) result = sr.dt.quarter print(result) Output SyntaxSyntax: Series.dt.quarter Parameter : None Returns: NumPy array containing quarter value How to Get Quarter Value from DateTime Object in Pandas SeriesTo get the quarter value from the DateTime object in the Pandas series we use the dt.quarter attribute of the Pandas library in Python. Let us understand it better with an example: Example:Use the dt.quarter attribute to return the quarter of the date in the underlying data of the given Series object. Python3 # importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series(pd.date_range('2012-12-12 12:12', periods = 5, freq = 'M')) # Creating the index idx = ['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5'] # set the index sr.index = idx # Print the series print(sr) Output : Now we will use the Series.dt.quarter attribute to return the quarter of the date in the DateTime based data in the given series object. Python3 # return the quarter of the date result = sr.dt.quarter # print the result print(result) Output : As we can see in the output, the Pandas dt.quarter attribute has successfully accessed and returned the quarter of the date in the underlying data of the given series object. Comment More infoAdvertise with us Next Article Pandas Series dt.day | Extract Day Part from DateTime Series S Shubham__Ranjan Follow Improve Article Tags : Pandas Python-pandas Python pandas-series-datetime AI-ML-DS With Python Similar Reads Pandas Series dt.month | Extract Month Part From DateTime Series The dt.month attribute returns a NumPy array containing the month of the DateTime in the underlying data of the given Series object. Example Python3 import pandas as pd sr = pd.Series(['2012-10-21 09:30', '2019-7-18 12:30', '2008-02-2 10:30', '2010-4-22 09:25', '2019-11-8 02:22']) idx = ['Day 1', 'D 2 min read Pandas Series dt.is_quarter_start | Check if a Date is First day of Quarter Pandas dt.is_quarter_start attribute returns a boolean value indicating whether the date is the first day of a quarter. Example: Python3 import pandas as pd sr = pd.Series(['2012-4-1', '2019-7-18 12:30', '2008-02-2 10:30', '2010-4-22 09:25', '2019-1-1 00:00']) idx = ['Day 1', 'Day 2', 'Day 3', 'Day 2 min read Pandas Series dt.date | Extract Date From DateTime Objects The dt.date attribute extracts the date part of the DateTime objects in a Pandas Series. It returns the NumPy array of Python datetime.date objects, mainly the date part of timestamps without information about the time and timezone. Example Python3 import pandas as pd sr = pd.Series(['2012-10-21 09: 2 min read Pandas Series dt.to_pydatetime | Return Python DateTime Objects Pandas dt.to_pydatetime() method returns the data as an array of native Python DateTime objects. Timezone information is retained if present. Example Python3 import pandas as pd sr = pd.Series(['2012-12-31', '2019-1-1 12:30', '2008-02-2 10:30', '2010-1-1 09:25', '2019-12-31 00:00']) idx = ['Day 1', 2 min read Pandas Series dt.day | Extract Day Part from DateTime Series Pandas dt.day attribute returns a NumPy array containing the day value of the DateTime in the underlying data of the given series object. Example Python3 import pandas as pd sr = pd.Series(['2012-10-21 09:30', '2019-7-18 12:30', '2008-02-2 10:30', '2010-4-22 09:25', '2019-11-8 02:22']) idx = ['Day 1 2 min read Pandas Series dt.year | Extract Year Part from DateTime Series The dt.year attribute returns a Numpy array containing the year value of the DateTime Series ObjectExamplePythonimport pandas as pd sr = pd.Series(['2012-10-21 09:30', '2019-7-18 12:30', '2008-02-2 10:30', '2010-4-22 09:25', '2019-11-8 02:22']) idx = ['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5'] sr. 3 min read Like