Given an unsorted array, the task is to sort the given array. You are allowed to do only following operation on array.
- flip(arr, i): Reverse array from 0 to i
Examples:
Input: arr[] = { 23, 10, 20, 11, 12, 6, 7 }
Output: { 6, 7, 10, 11, 12, 20, 23}
Input: arr[] = { 0, 1, 1, 0, 0 }
Output: { 0, 0, 0, 1, 1 }
Approach: Unlike a traditional sorting algorithm, which attempts to sort with the fewest comparisons possible, the goal is to sort the sequence in as few reversals as possible.
The idea is to do something similar to Selection Sort. We one by one place maximum element at the end and reduce the size of current array by one.
Following are the detailed steps. Let given array be arr[] and size of array be n.
- Start from current size equal to n and reduce current size by one while it's greater than 1. Let the current size be curr_size.
- Do following for every curr_size
- Find index of the maximum element in arr[0 to curr_szie-1]. Let the index be 'mi'
- Call flip(arr, mi)
- Call flip(arr, curr_size - 1)
See following video for visualization of the above algorithm.
http://www.youtube.com/embed/kk-_DDgoXfk
Below is the implementation:
C
// C program to
// sort array using
// pancake sort
#include <stdio.h>
#include <stdlib.h>
/* Reverses arr[0..i] */
void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i) {
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
int findMax(int arr[], int n)
{
int mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
void pancakeSort(int* arr, int n)
{
// Start from the complete
// array and one by one
// reduce current size
// by one
for (int curr_size = n; curr_size > 1;
--curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
int mi = findMax(arr, curr_size);
// Move the maximum
// element to end of
// current array if
// it's not already
// at the end
if (mi != curr_size - 1) {
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size - 1);
}
}
}
// A utility function to print
// n array of size n
void printArray(int arr[], int n)
{
for (int i = 0; i < n; ++i)
printf("%d ", arr[i]);
}
// Driver program to test above function
int main()
{
int arr[] = { 23, 10, 20, 11, 12, 6, 7 };
int n = sizeof(arr) / sizeof(arr[0]);
pancakeSort(arr, n);
puts("Sorted Array ");
printArray(arr, n);
return 0;
}
CPP
// C++ program to
// sort array using
// pancake sort
#include<bits/stdc++.h>
using namespace std;
/* Reverses arr[0..i] */
void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i)
{
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
int findMax(int arr[], int n)
{
int mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
void pancakeSort(int *arr, int n)
{
// Start from the complete
// array and one by one
// reduce current size
// by one
for (int curr_size = n; curr_size > 1;
--curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
int mi = findMax(arr, curr_size);
// Move the maximum
// element to end of
// current array if
// it's not already
// at the end
if (mi != curr_size-1)
{
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size-1);
}
}
}
// A utility function to print
// n array of size n
void printArray(int arr[], int n)
{
for (int i = 0; i < n; ++i)
cout<< arr[i]<<" ";
}
// Driver program to test above function
int main()
{
int arr[] = {23, 10, 20, 11, 12, 6, 7};
int n = sizeof(arr)/sizeof(arr[0]);
pancakeSort(arr, n);
cout<<"Sorted Array "<<endl;
printArray(arr, n);
return 0;
}
//This code is contributed by rathbhupendra
Java
// Java program to
// sort array using
// pancake sort
import java.io.*;
class PancakeSort {
/* Reverses arr[0..i] */
static void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i)
{
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
static int findMax(int arr[], int n)
{
int mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
static int pancakeSort(int arr[], int n)
{
// Start from the complete
// array and one by one
// reduce current size by one
for (int curr_size = n; curr_size > 1;
--curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
int mi = findMax(arr, curr_size);
// Move the maximum element
// to end of current array
// if it's not already at
// the end
if (mi != curr_size-1)
{
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size-1);
}
}
return 0;
}
/* Utility function to print array arr[] */
static void printArray(int arr[], int arr_size)
{
for (int i = 0; i < arr_size; i++)
System.out.print(arr[i] + " ");
System.out.println("");
}
/* Driver function to check for above functions*/
public static void main (String[] args)
{
int arr[] = {23, 10, 20, 11, 12, 6, 7};
int n = arr.length;
pancakeSort(arr, n);
System.out.println("Sorted Array: ");
printArray(arr, n);
}
}
/* This code is contributed by Devesh Agrawal*/
Python3
# Python3 program to
# sort array using
# pancake sort
# Reverses arr[0..i] */
def flip(arr, i):
start = 0
while start < i:
temp = arr[start]
arr[start] = arr[i]
arr[i] = temp
start += 1
i -= 1
# Returns index of the maximum
# element in arr[0..n-1] */
def findMax(arr, n):
mi = 0
for i in range(0,n):
if arr[i] > arr[mi]:
mi = i
return mi
# The main function that
# sorts given array
# using flip operations
def pancakeSort(arr, n):
# Start from the complete
# array and one by one
# reduce current size
# by one
curr_size = n
while curr_size > 1:
# Find index of the maximum
# element in
# arr[0..curr_size-1]
mi = findMax(arr, curr_size)
# Move the maximum element
# to end of current array
# if it's not already at
# the end
if mi != curr_size-1:
# To move at the end,
# first move maximum
# number to beginning
flip(arr, mi)
# Now move the maximum
# number to end by
# reversing current array
flip(arr, curr_size-1)
curr_size -= 1
# A utility function to
# print an array of size n
def printArray(arr, n):
for i in range(0,n):
print ("%d"%( arr[i]),end=" ")
# Driver program
arr = [23, 10, 20, 11, 12, 6, 7]
n = len(arr)
pancakeSort(arr, n);
print ("Sorted Array ")
printArray(arr,n)
# This code is contributed by shreyanshi_arun.
C#
// C# program to sort array using
// pancake sort
using System;
class GFG {
// Reverses arr[0..i]
static void flip(int []arr, int i)
{
int temp, start = 0;
while (start < i)
{
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
static int findMax(int []arr, int n)
{
int mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
static int pancakeSort(int []arr, int n)
{
// Start from the complete
// array and one by one
// reduce current size by one
for (int curr_size = n; curr_size > 1;
--curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
int mi = findMax(arr, curr_size);
// Move the maximum element
// to end of current array
// if it's not already at
// the end
if (mi != curr_size - 1)
{
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size - 1);
}
}
return 0;
}
// Utility function to print
// array arr[]
static void printArray(int []arr,
int arr_size)
{
for (int i = 0; i < arr_size; i++)
Console.Write(arr[i] + " ");
Console.Write("");
}
// Driver function to check for
// above functions
public static void Main ()
{
int []arr = {23, 10, 20, 11, 12, 6, 7};
int n = arr.Length;
pancakeSort(arr, n);
Console.Write("Sorted Array: ");
printArray(arr, n);
}
}
// This code is contributed by nitin mittal.
PHP
<?php
// PHP program to
// sort array using
// pancake sort
/* Reverses arr[0..i] */
function flip(&$arr, $i)
{
$start = 0;
while ($start < $i)
{
$temp = $arr[$start];
$arr[$start] = $arr[$i];
$arr[$i] = $temp;
$start++;
$i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
function findMax($arr, $n)
{
$mi = 0;
for ($i = 0; $i < $n; ++$i)
if ($arr[$i] > $arr[$mi])
$mi = $i;
return $mi;
}
// The main function that
// sorts given array using
// flip operations
function pancakeSort(&$arr, $n)
{
// Start from the complete
// array and one by one
// reduce current size
// by one
for ($curr_size = $n; $curr_size > 1;
--$curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
$mi = findMax($arr, $curr_size);
// Move the maximum
// element to end of
// current array if
// it's not already
// at the end
if ($mi != $curr_size-1)
{
// To move at the end,
// first move maximum
// number to beginning
flip($arr, $mi);
// Now move the maximum
// number to end by
// reversing current array
flip($arr, $curr_size-1);
}
}
}
// A utility function to print
// n array of size n
function printArray($arr, $n)
{
for ($i = 0; $i < $n; ++$i)
print($arr[$i]." ");
}
// Driver code
$arr = array(23, 10, 20, 11, 12, 6, 7);
$n = count($arr);
pancakeSort($arr, $n);
echo("Sorted Array \n");
printArray($arr, $n);
return 0;
// This code is contributed by chandan_jnu
?>
JavaScript
<script>
// JavaScript program to sort array using pancake sort
// Reverses arr[0..i]
function flip(arr, i)
{
let temp, start = 0;
while (start < i)
{
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Returns index of the
// maximum element in
// arr[0..n-1]
function findMax(arr, n)
{
let mi, i;
for (mi = 0, i = 0; i < n; ++i)
if (arr[i] > arr[mi])
mi = i;
return mi;
}
// The main function that
// sorts given array using
// flip operations
function pancakeSort(arr, n)
{
// Start from the complete
// array and one by one
// reduce current size by one
for (let curr_size = n; curr_size > 1; --curr_size)
{
// Find index of the
// maximum element in
// arr[0..curr_size-1]
let mi = findMax(arr, curr_size);
// Move the maximum element
// to end of current array
// if it's not already at
// the end
if (mi != curr_size - 1)
{
// To move at the end,
// first move maximum
// number to beginning
flip(arr, mi);
// Now move the maximum
// number to end by
// reversing current array
flip(arr, curr_size - 1);
}
}
return 0;
}
// Utility function to print
// array arr[]
function printArray(arr, arr_size)
{
for (let i = 0; i < arr_size; i++)
document.write(arr[i] + " ");
document.write("");
}
let arr = [23, 10, 20, 11, 12, 6, 7];
let n = arr.length;
pancakeSort(arr, n);
document.write("Sorted Array: " + "</br>");
printArray(arr, n);
</script>
OutputSorted Array
6 7 10 11 12 20 23
Time Complexity: O(n2), Total O(n) flip operations are performed in above code
Auxiliary Space: O(1)
Recursive Approach
Another approach to implement pancake sort in C++ is by using a recursive algorithm .
Approach :
Step 1: Define a function to flip a subarray of the given array. This function takes two arguments: the array to be flipped, and the index of the last element of the subarray to be flipped.
Step 2: Define a function to find the index of the maximum element in a given subarray of the array. This function takes two arguments: the array to be searched, and the index of the last element of the subarray to be searched.
Step 3: Iterate over the input array from the end towards the beginning, and for each element i, do the following:
- Find the index of the maximum element in the subarray arr[0:i].
- If the maximum element is not already at the end of the subarray, flip the subarray arr[0:max_index].
- Flip the entire subarray arr[0:i] to move the element i to its correct position.
Step 4: Repeat Step 3 for the subarray arr[0:n-1], arr[0:n-2], ..., arr[0:1] until the entire array is sorted.
Implementation Of above approach:
C++
#include <bits/stdc++.h>
using namespace std;
// Reverses arr[0..i]
void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i) {
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Recursive function to sort the array using pancake sort
void pancakeSort(int arr[], int n)
{
// Base case: If the array is already sorted or has only
// one element, return
if (n == 1)
return;
// Find the index of the maximum element in the unsorted
// portion of the array
int mi = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > arr[mi]) {
mi = i;
}
}
// Move the maximum element to the front of the array if
// it's not already there
if (mi != 0) {
flip(arr, mi);
}
// Flip the entire array to move the maximum element to
// its correct position
flip(arr, n - 1);
// Recursively sort the remaining unsorted portion of
// the array
pancakeSort(arr, n - 1);
}
// Driver program to test above function
int main()
{
int arr[] = { 23, 10, 20, 11, 12, 6, 7 };
int n = sizeof(arr) / sizeof(arr[0]);
pancakeSort(arr, n);
cout << "Sorted Array: ";
for (int i = 0; i < n; i++) {
cout << arr[i] << " ";
}
cout << endl;
return 0;
}
Java
import java.util.*;
public class PancakeSort {
// Reverses arr[0..i]
static void flip(int arr[], int i)
{
int temp, start = 0;
while (start < i) {
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Recursive function to sort the array using pancake
// sort
static void pancakeSort(int arr[], int n)
{
// Base case: If the array is already sorted or has
// only one element, return
if (n == 1)
return;
// Find the index of the maximum element in the
// unsorted portion of the array
int mi = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > arr[mi]) {
mi = i;
}
}
// Move the maximum element to the front of the
// array if it's not already there
if (mi != 0) {
flip(arr, mi);
}
// Flip the entire array to move the maximum element
// to its correct position
flip(arr, n - 1);
// Recursively sort the remaining unsorted portion
// of the array
pancakeSort(arr, n - 1);
}
// Driver program to test above function
public static void main(String args[])
{
int arr[] = { 23, 10, 20, 11, 12, 6, 7 };
int n = arr.length;
pancakeSort(arr, n);
System.out.print("Sorted Array: ");
for (int i = 0; i < n; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
// Contributed by sdeadityasharma
Python3
# Python code addition
# Reverses arr[0..i]
def flip(arr, i):
start = 0
while start < i:
temp = arr[start]
arr[start] = arr[i]
arr[i] = temp
start += 1
i -= 1
# Recursive function to sort the array using pancake sort
def pancakeSort(arr, n):
# Base case: If the array is already sorted or has only
# one element, return
if n == 1:
return
# Find the index of the maximum element in the unsorted
# portion of the array
mi = 0
for i in range(n):
if arr[i] > arr[mi]:
mi = i
# Move the maximum element to the front of the array if
# it's not already there
if mi != 0:
flip(arr, mi)
# Flip the entire array to move the maximum element to
# its correct position
flip(arr, n - 1)
# Recursively sort the remaining unsorted portion of
# the array
pancakeSort(arr, n - 1)
# Driver program to test above function
arr = [23, 10, 20, 11, 12, 6, 7]
n = len(arr)
pancakeSort(arr, n)
print("Sorted Array:", end=" ")
for i in range(n):
print(arr[i], end=" ")
print()
# The code is contributed by Nidhi goel.
C#
using System;
class Program {
// Reverses arr[0..i]
static void Flip(int[] arr, int i)
{
int temp, start = 0;
while (start < i) {
temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Recursive function to sort the array using pancake
// sort
static void PancakeSort(int[] arr, int n)
{
// Base case: If the array is already sorted or has
// only one element, return
if (n == 1)
return;
// Find the index of the maximum element in the
// unsorted portion of the array
int mi = 0;
for (int i = 0; i < n; i++) {
if (arr[i] > arr[mi]) {
mi = i;
}
}
// Move the maximum element to the front of the
// array if it's not already there
if (mi != 0) {
Flip(arr, mi);
}
// Flip the entire array to move the maximum element
// to its correct position
Flip(arr, n - 1);
// Recursively sort the remaining unsorted portion
// of the array
PancakeSort(arr, n - 1);
}
// Driver program to test above function
static void Main()
{
int[] arr = { 23, 10, 20, 11, 12, 6, 7 };
int n = arr.Length;
PancakeSort(arr, n);
Console.Write("Sorted Array: ");
for (int i = 0; i < n; i++) {
Console.Write(arr[i] + " ");
}
Console.WriteLine();
}
}
// This code is contributed by sarojmcy2e
JavaScript
// Reverses arr[0..i]
function flip(arr, i) {
let start = 0;
while (start < i) {
let temp = arr[start];
arr[start] = arr[i];
arr[i] = temp;
start++;
i--;
}
}
// Recursive function to sort the array using pancake sort
function pancakeSort(arr, n) {
if (n === 1) {
// Base case: If the array is already sorted or has only one element, return
return;
}
// Find the index of the maximum element in the unsorted portion of the array
let mi = 0;
for (let i = 0; i < n; i++) {
if (arr[i] > arr[mi]) {
mi = i;
}
}
// Move the maximum element to the front of the array if it's not already there
if (mi !== 0) {
flip(arr, mi);
}
// Flip the entire array to move the maximum element to its correct position
flip(arr, n - 1);
// Recursively sort the remaining unsorted portion of the array
pancakeSort(arr, n - 1);
}
let arr = [23, 10, 20, 11, 12, 6, 7];
let n = arr.length;
pancakeSort(arr, n);
console.log("Sorted Array: " + arr.join(" "));
// This code is contributed by shiv1o43g
OutputSorted Array: 6 7 10 11 12 20 23
Complexity Analysis:
- The time complexity of pancake sort is O(n2), where n is the size of the input array. The worst case occurs when the input array is reverse sorted.
- The space complexity is O(1) since the sorting is done in-place.
References:
http://en.wikipedia.org/wiki/Pancake_sorting
Similar Reads
Sorting Algorithms A Sorting Algorithm is used to rearrange a given array or list of elements in an order. For example, a given array [10, 20, 5, 2] becomes [2, 5, 10, 20] after sorting in increasing order and becomes [20, 10, 5, 2] after sorting in decreasing order. There exist different sorting algorithms for differ
3 min read
Introduction to Sorting Techniques â Data Structure and Algorithm Tutorials Sorting refers to rearrangement of a given array or list of elements according to a comparison operator on the elements. The comparison operator is used to decide the new order of elements in the respective data structure. Why Sorting Algorithms are ImportantThe sorting algorithm is important in Com
3 min read
Most Common Sorting Algorithms
Selection Sort Selection Sort is a comparison-based sorting algorithm. It sorts an array by repeatedly selecting the smallest (or largest) element from the unsorted portion and swapping it with the first unsorted element. This process continues until the entire array is sorted.First we find the smallest element an
8 min read
Bubble Sort Algorithm Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in the wrong order. This algorithm is not suitable for large data sets as its average and worst-case time complexity are quite high.We sort the array using multiple passes. After the fir
8 min read
Insertion Sort Algorithm Insertion sort is a simple sorting algorithm that works by iteratively inserting each element of an unsorted list into its correct position in a sorted portion of the list. It is like sorting playing cards in your hands. You split the cards into two groups: the sorted cards and the unsorted cards. T
9 min read
Merge Sort - Data Structure and Algorithms Tutorials Merge sort is a popular sorting algorithm known for its efficiency and stability. It follows the divide-and-conquer approach. It works by recursively dividing the input array into two halves, recursively sorting the two halves and finally merging them back together to obtain the sorted array. Merge
12 min read
Quick Sort QuickSort is a sorting algorithm based on the Divide and Conquer that picks an element as a pivot and partitions the given array around the picked pivot by placing the pivot in its correct position in the sorted array. It works on the principle of divide and conquer, breaking down the problem into s
12 min read
Heap Sort - Data Structures and Algorithms Tutorials Heap sort is a comparison-based sorting technique based on Binary Heap Data Structure. It can be seen as an optimization over selection sort where we first find the max (or min) element and swap it with the last (or first). We repeat the same process for the remaining elements. In Heap Sort, we use
14 min read
Counting Sort - Data Structures and Algorithms Tutorials Counting Sort is a non-comparison-based sorting algorithm. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that info
7 min read