NumPy for Fast Fourier Transform (FFT) Analysis Last Updated : 23 Jul, 2025 Comments Improve Suggest changes 1 Likes Like Report Fast Fourier Transform (FFT) decomposes a function or dataset into sine and cosine components at different frequencies. It is a quick way to change a signal from the time view to the frequency view. NumPy isa popular Python library that has built in tools to easily perform FFT on data. Using NumPy’s FFT functions you can quickly analyze signals and find important patterns in their frequencies.Fast Fourier Transform (FFT)Fast Fourier TransformThe Fast Fourier Transform decomposes a function or dataset into sine and cosine components at different frequencies.FFT is an efficient algorithm to compute this transform quickly, reducing the computational complexity from O(N^2) to O(N \log N) where N is the number of data points.FFT is widely used in signal processing, audio analysis, image processing, communications and scientific computing.Step by Step UsageStep 1: Install Necessary LibrariesThis imports the NumPy library for numerical operations and Matplotlib’s pyplot module for plotting graphs.Together, they let you process data and visualize results easily in Python. Python import numpy as np import matplotlib.pyplot as plt Step 2: Create a Sample SignalHere you define the sampling frequency Fs and calculate the time step T.Then you create a time vector t for 1 second and generate a signal by adding two sine waves at 50 Hz and 120 Hz with different amplitudes. Python Fs = 500 T = 1/Fs t = np.arange(0, 1, T) f1 = 50 f2 = 120 signal = 0.7*np.sin(2*np.pi*f1*t) + 1.0*np.sin(2*np.pi*f2*t) Step 3: Compute FFT and Frequency BinsThis computes the FFT of the signal to get its frequency components and stores the number of points N.It then calculates the corresponding frequency bins with np.fft.fftfreq() and finds the magnitude spectrum by taking the absolute values. Python fft_values = np.fft.fft(signal) N = len(signal) freq = np.fft.fftfreq(N, T) magnitude = np.abs(fft_values) Step 4: Plot Time Domain SignalThis creates the first subplot to display the original signal in the time domain.It plots amplitude versus time, adds a title and labels the axes for better understanding. Python plt.subplot(2, 1, 1) plt.plot(t, signal) plt.title('Time Domain Signal') plt.xlabel('Time [s]') plt.ylabel('Amplitude') Output:Output of Time Domain SignalStep 5: Plot Frequency Domain SignalThis creates the second subplot to show the magnitude spectrum of the signal in the frequency domain.It uses stem to plot only the positive frequencies, adds axis labels and a title and tight_layout() adjusts spacing before displaying the plots. Python plt.subplot(2, 1, 2) plt.stem(freq[:N//2], magnitude[:N//2]) plt.title('Frequency Domain (Magnitude Spectrum)') plt.xlabel('Frequency [Hz]') plt.ylabel('Magnitude') plt.tight_layout() plt.show() Output:Output of Frequency Domain SignalYou can download the Source code from here - NumPy for Fast Fourier Transform (FFT) AnalysisAdvantagesFast and efficient: Uses the Cooley Tukey FFT algorithm with making it much faster than the basic DFT. This means you can analyze large signals or images quickly, even on standard hardware.Easy to use: NumPy’s FFT module provides simple, consistent functions with minimal setup. You don’t need extra dependencies just import NumPy and you’re ready to go.Flexible: Works for 1D signals, 2D images or n dimensional arrays supporting a wide range of applications. You can combine it with other NumPy tools for pre or post processing.Widely supported: NumPy is one of the most popular Python libraries so FFT features are well tested and reliable. It integrates easily with SciPy, matplotlib and other data science tools.DisadvantagesIn memory only: NumPy FFT operates on data that fits entirely in RAM. For huge datasets or streaming data you might need more specialized tools.Basic: The module provides raw FFT computation but does not include advanced features like automatic windowing, filtering or detailed spectral analysis. You’ll need to add these manually or use SciPy’s signal module.No GPU acceleration: NumPy’s FFT is CPU based and doesn’t use GPU resources. For very large FFTs or real time processing, GPU based libraries like CuPy or PyTorch can be much faster.Limited real time use: It’s not designed for real time, low latency applications like live audio or radar. For such tasks dedicated real time DSP libraries are a better fit. Create Quiz Comment S shrurfu5 Follow 1 Improve S shrurfu5 Follow 1 Improve Article Tags : Numpy ML-Statistics Explore NumPy Tutorial - Python Library 3 min read IntroductionNumPy Introduction 6 min read Python NumPy 6 min read NumPy Array in Python 2 min read Basics of NumPy Arrays 4 min read Numpy - ndarray 3 min read Data type Object (dtype) in NumPy Python 3 min read Creating NumPy ArrayNumpy - Array Creation 5 min read numpy.arange() in Python 2 min read numpy.zeros() in Python 2 min read NumPy - Create array filled with all ones 2 min read NumPy - linspace() Function 2 min read numpy.eye() in Python 2 min read Creating a one-dimensional NumPy array 2 min read How to create an empty and a full NumPy array 2 min read Create a Numpy array filled with all zeros - Python 2 min read How to generate 2-D Gaussian array using NumPy? 2 min read How to create a vector in Python using NumPy 4 min read Python - Numpy fromrecords() method 2 min read NumPy Array ManipulationNumPy Copy and View of Array 4 min read How to Copy NumPy array into another array? 2 min read Appending values at the end of an NumPy array 4 min read How to swap columns of a given NumPy array? 4 min read Insert a new axis within a NumPy array 4 min read numpy.hstack() in Python 2 min read numpy.vstack() in python 2 min read Joining NumPy Array 3 min read Combining a One and a Two-Dimensional NumPy Array 3 min read Numpy np.ma.concatenate() method-Python 2 min read Numpy dstack() method-Python 2 min read Splitting Arrays in NumPy 6 min read How to compare two NumPy arrays? 2 min read Find the union of two NumPy arrays 2 min read Find unique rows in a NumPy array 3 min read Numpy np.unique() method-Python 2 min read numpy.trim_zeros() in Python 2 min read Matrix in NumPyMatrix manipulation in Python 4 min read numpy matrix operations | empty() function 1 min read numpy matrix operations | zeros() function 2 min read numpy matrix operations | ones() function 2 min read numpy matrix operations | eye() function 2 min read numpy matrix operations | identity() function 1 min read Adding and Subtracting Matrices in Python 2 min read Matrix Multiplication in NumPy 2 min read Numpy ndarray.dot() function | Python 2 min read NumPy | Vector Multiplication 4 min read How to calculate dot product of two vectors in Python? 3 min read Multiplication of two Matrices in Single line using Numpy in Python 3 min read Numpy np.eigvals() method - Python 1 min read How to Calculate the Determinant of a Matrix using NumPy 2 min read Numpy matrix.transpose() in Python 1 min read Python | Numpy matrix.var() 1 min read Compute the inverse of a matrix using NumPy 2 min read Operations on NumPy ArrayNumpy | Binary Operations 8 min read Numpy | Mathematical Function 9 min read Numpy - String Functions & Operations 5 min read Reshaping NumPy ArrayReshape NumPy Array - Python 2 min read Python | Numpy matrix.resize() 1 min read Python | Numpy matrix.reshape() 1 min read NumPy Array Shape 2 min read Change the dimension of a NumPy array 3 min read numpy.ndarray.resize() function - Python 1 min read Flatten a Matrix in Python using NumPy 1 min read numpy.moveaxis() function | Python 2 min read numpy.swapaxes() function - Python 2 min read Python | Numpy matrix.swapaxes() 1 min read numpy.vsplit() function | Python 2 min read numpy.hsplit() function | Python 2 min read Numpy MaskedArray.reshape() function | Python 3 min read Python | Numpy matrix.squeeze() 1 min read Indexing NumPy ArrayBasic Slicing and Advanced Indexing in NumPy 3 min read numpy.compress() in Python 2 min read Accessing Data Along Multiple Dimensions Arrays in Python Numpy 3 min read How to Access Different Rows of a Multidimensional NumPy Array 2 min read numpy.tril_indices() function | Python 1 min read Arithmetic operations on NumPyArrayNumPy Array Broadcasting 6 min read Estimation of Variable | set 1 3 min read Python: Operations on Numpy Arrays 3 min read How to use the NumPy sum function? 4 min read numpy.divide() in Python 3 min read numpy.inner() in python 1 min read Absolute Deviation and Absolute Mean Deviation using NumPy | Python 2 min read Calculate standard deviation of a Matrix in Python 2 min read numpy.gcd() in Python 2 min read Linear Algebra in NumPy ArrayNumpy | Linear Algebra 6 min read Get the QR factorization of a given NumPy array 2 min read How to get the magnitude of a vector in NumPy? 3 min read How to compute the eigenvalues and right eigenvectors of a given square array using NumPY? 2 min read Like