numpy.zeros_like() in Python Last Updated : 08 Mar, 2024 Summarize Comments Improve Suggest changes Share Like Article Like Report This numpy method returns an array of given shape and type as given array, with zeros. Syntax: numpy.zeros_like(array, dtype = None, order = 'K', subok = True) Parameters : array : array_like input subok : [optional, boolean]If true, then newly created array will be sub-class of array; otherwise, a base-class array order : C_contiguous or F_contiguous C-contiguous order in memory(last index varies the fastest) C order means that operating row-rise on the array will be slightly quicker FORTRAN-contiguous order in memory (first index varies the fastest). F order means that column-wise operations will be faster. dtype : [optional, float(byDefault)] Data type of returned array. Returns : ndarray of zeros having given shape, order and datatype. Code 1 : Python # Python Programming illustrating # numpy.zeros_like method import numpy as geek array = geek.arange(10).reshape(5, 2) print("Original array : \n", array) b = geek.zeros_like(array, float) print("\nMatrix b : \n", b) array = geek.arange(8) c = geek.zeros_like(array) print("\nMatrix c : \n", c) Output: Original array : [[0 1] [2 3] [4 5] [6 7] [8 9]] Matrix b : [[ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.]] Matrix c : [0 0 0 0 0 0 0 0] Code 2 : Python # Python Programming illustrating # numpy.zeros_like method import numpy as geek array = geek.arange(10).reshape(5, 2) print("Original array : \n", array) array = geek.arange(4).reshape(2, 2) c = geek.zeros_like(array, dtype = 'float') print("\nMatrix : \n", c) array = geek.arange(8) c = geek.zeros_like(array, dtype = 'float', order ='C') print("\nMatrix : \n", c) Output : Original array : [[0 1] [2 3] [4 5] [6 7] [8 9]] Matrix : [[ 0. 0.] [ 0. 0.]] Matrix : [ 0. 0. 0. 0. 0. 0. 0. 0.] Note : Also, these codes won’t run on online IDE's. Please run them on your systems to explore the working Comment More infoAdvertise with us Next Article numpy.zeros_like() in Python M Mohit Gupta Improve Article Tags : Python Python-numpy Python numpy-arrayCreation Practice Tags : python Similar Reads numpy.zeros() in Python numpy.zeros() function creates a new array of specified shapes and types, filled with zeros. It is beneficial when you need a placeholder array to initialize variables or store intermediate results. We can create 1D array using numpy.zeros().Let's understand with the help of an example:Pythonimport 2 min read numpy.trim_zeros() in Python numpy.trim_zeros() removes the leading and trailing zeros from a 1-D array. It is often used to clean up data by trimming unnecessary zeros from the beginning or end of the array. Example:Pythonimport numpy as np a = np.array([0, 0, 3, 4, 0, 5, 0, 0]) res = np.trim_zeros(a) print(res)Output[3 4 0 5] 2 min read numpy.matlib.zeros() function | Python numpy.matlib.zeros() function return matrix of given shape and type, filled with zeros. Syntax : numpy.matlib.zeros(shape, dtype = None, order = 'C') Parameters : shape : [sequence of ints] Shape of the empty matrix. dtype : [data-type, optional] The desired data-type for the matrix, default is floa 1 min read numpy.full_like() in Python The numpy.full_like() function return a new array with the same shape and type as a given array.Syntax : numpy.full_like(a, fill_value, dtype = None, order = 'K', subok = True) Parameters : shape : Number of rows order : C_contiguous or F_contiguous dtype : [optional, float(by Default )] Data type o 2 min read numpy.ones_like() in Python The numpy.one_like() function returns an array of given shape and type as a given array, with ones. Syntax: numpy.ones_like(array, dtype = None, order = 'K', subok = True) Parameters : array : array_like input subok : [optional, boolean]If true, then newly created array will be sub-class of array; o 2 min read Like