numpy.ma.is_masked() function | Python Last Updated : 05 May, 2020 Comments Improve Suggest changes Like Article Like Report numpy.ma.is_masked() function determine whether input has masked values & accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values. Syntax : numpy.ma.is_masked(arr) Parameters : arr : [array_like] Array to check for masked values. Return : [bool] True if arr is a MaskedArray with masked values, False otherwise. Code #1 : Python3 # Python program explaining # numpy.ma.is_masked() function # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma arr = ma.masked_equal([0, 1, 2, 0, 3], 0) gfg = ma.is_masked(arr) print (gfg) Output : True Code #2 : Python3 # Python program explaining # numpy.ma.is_masked() function # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma arr = [True, False, True] # always returns False unless # the input is a MaskedArray gfg = ma.is_masked(arr) print (gfg) Output : False Comment More infoAdvertise with us Next Article numpy.ma.is_masked() function | Python S sanjoy_62 Follow Improve Article Tags : Machine Learning Python-numpy python Python Numpy-Masked Array Practice Tags : Machine Learningpython Similar Reads numpy.ma.is_mask() function | Python numpy.ma.is_mask() function return True if parameter m is a valid, standard mask. This function does not check the contents of the input, only that the type is MaskType. In particular, this function returns False if the mask has a flexible dtype. Syntax : numpy.ma.is_mask(m) Parameter : m : [array_l 1 min read numpy.ma.masked_all() function | Python numpy.ma.masked_all() function return an empty masked array of the given shape and dtype, where all the data are masked. Syntax : numpy.ma.masked_all(shape, dtype) Parameter : shape : [tuple] Shape of the required MaskedArray. dtype : [dtype, optional] Data type of the output. Return : [MaskedArray] 1 min read numpy.ma.masked_all_like() function | Python numpy.ma.masked_all_like() function return an empty masked array of the same shape and dtype as the array arr, where all the data are masked. Syntax : numpy.ma.masked_all_like(arr) Parameter : arr : [ndarray] An array describing the shape and dtype of the required MaskedArray. Return : [MaskedArray] 1 min read numpy.ma.mask_or() function | Python numpy.ma.mask_or() function combine two masks with the logical_or operator. The result may be a view on m1 or m2 if the other is nomask (i.e. False). Syntax : numpy.ma.mask_or(m1, m2, copy = False, shrink = True) Parameters : m1, m2 : [ array_like] Input masks. copy : [bool, optional] If copy is Fal 2 min read numpy.ma.make_mask() function | Python numpy.ma.make_mask() function is used to create a boolean mask from an array. This function can accept any sequence that is convertible to integers, or nomask. It does not require that contents must be 0s and 1s, values of 0 are interpreted as False, everything else as True. Return m as a boolean ma 2 min read Like