numpy.ma.clump_masked() function | Python Last Updated : 22 Apr, 2020 Comments Improve Suggest changes Like Article Like Report numpy.ma.clump_masked() function returns a list of slices corresponding to the masked clumps of a 1-D array. Syntax : numpy.ma.clump_masked(arr) Parameters : arr : [ndarray] A one-dimensional masked array. Return : [list of slice] The list of slices, one for each continuous region of masked elements in arr. Code #1 : Python3 # Python program explaining # numpy.ma.clump_masked() function # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma arr = geek.ma.masked_array(geek.arange(8)) arr[[0, 1, 2, 6]] = geek.ma.masked gfg = geek.ma.clump_masked(arr) print (gfg) Output : [slice(0, 3, None), slice(6, 7, None)] Code #2 : Python3 # Python program explaining # numpy.ma.clump_masked() function # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma arr = geek.ma.masked_array(geek.arange(10)) arr[[0, 1, 2, 6, 8, 9]] = geek.ma.masked gfg = geek.ma.clump_masked(arr) print (gfg) Output : [slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)] Comment More infoAdvertise with us Next Article numpy.ma.clump_masked() function | Python S sanjoy_62 Follow Improve Article Tags : Machine Learning Python-numpy python Python Numpy-Masked Array Practice Tags : Machine Learningpython Similar Reads numpy.ma.masked_all() function | Python numpy.ma.masked_all() function return an empty masked array of the given shape and dtype, where all the data are masked. Syntax : numpy.ma.masked_all(shape, dtype) Parameter : shape : [tuple] Shape of the required MaskedArray. dtype : [dtype, optional] Data type of the output. Return : [MaskedArray] 1 min read numpy.ma.mask_cols() function | Python In thisnumpy.ma.mask_cols() function, mask columns of a 2D array that contain masked values. This function is a shortcut to mask_rowcols with axis equal to 1. Syntax : numpy.ma.mask_cols(arr, axis = None) Parameters : arr : [array_like, MaskedArray] The array to mask. axis : [int, optional] Axis alo 1 min read numpy.ma.is_masked() function | Python numpy.ma.is_masked() function determine whether input has masked values & accepts any object as input, but always returns False unless the input is a MaskedArray containing masked values. Syntax : numpy.ma.is_masked(arr) Parameters : arr : [array_like] Array to check for masked values. Return : 1 min read numpy.ma.masked_all_like() function | Python numpy.ma.masked_all_like() function return an empty masked array of the same shape and dtype as the array arr, where all the data are masked. Syntax : numpy.ma.masked_all_like(arr) Parameter : arr : [ndarray] An array describing the shape and dtype of the required MaskedArray. Return : [MaskedArray] 1 min read numpy.ma.MaskedArray.count() function - Python numpy.ma.MaskedArray.count() function count the non-masked elements of the array along the given axis. Syntax : numpy.ma.MaskedArray.count(self, axis=None, keepdims = no value) Parameters : axis : [None or int or tuple of ints, optional] Axis along which the count is performed. The default axis is N 2 min read Like